We study the way in which equivariant Kazhdan–Lusztig polynomials, equivariant inverse Kazhdan–Lusztig polynomials, and equivariant -polynomials of matroids change under the operation of relaxation of a collection of stressed hyperplanes. This allows us to compute these polynomials for arbitrary paving matroids, which we do in a number of examples, including various matroids associated with Steiner systems that admit actions of Mathieu groups.
Revised:
Accepted:
Published online:
Keywords: Paving matroids, Kazhdan–Lusztig, characters of groups
Karn, Trevor 1; Nasr, George D. 2; Proudfoot, Nicholas 2; Vecchi, Lorenzo 3
@article{ALCO_2023__6_3_677_0, author = {Karn, Trevor and Nasr, George D. and Proudfoot, Nicholas and Vecchi, Lorenzo}, title = {Equivariant {Kazhdan{\textendash}Lusztig} theory of paving matroids}, journal = {Algebraic Combinatorics}, pages = {677--688}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {3}, year = {2023}, doi = {10.5802/alco.281}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.281/} }
TY - JOUR AU - Karn, Trevor AU - Nasr, George D. AU - Proudfoot, Nicholas AU - Vecchi, Lorenzo TI - Equivariant Kazhdan–Lusztig theory of paving matroids JO - Algebraic Combinatorics PY - 2023 SP - 677 EP - 688 VL - 6 IS - 3 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.281/ DO - 10.5802/alco.281 LA - en ID - ALCO_2023__6_3_677_0 ER -
%0 Journal Article %A Karn, Trevor %A Nasr, George D. %A Proudfoot, Nicholas %A Vecchi, Lorenzo %T Equivariant Kazhdan–Lusztig theory of paving matroids %J Algebraic Combinatorics %D 2023 %P 677-688 %V 6 %N 3 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.281/ %R 10.5802/alco.281 %G en %F ALCO_2023__6_3_677_0
Karn, Trevor; Nasr, George D.; Proudfoot, Nicholas; Vecchi, Lorenzo. Equivariant Kazhdan–Lusztig theory of paving matroids. Algebraic Combinatorics, Volume 6 (2023) no. 3, pp. 677-688. doi : 10.5802/alco.281. https://alco.centre-mersenne.org/articles/10.5802/alco.281/
[1] of finite groups. Maximal subgroups and ordinary characters for simple groups, Oxford University Press, Eynsham, 1985, xxxiv+252 pages (with computational assistance from J. G. Thackray) | MR
[2] The Kazhdan-Lusztig polynomial of a matroid, Adv. Math., Volume 299 (2016), pp. 36-70 | DOI | MR | Zbl
[3] Stressed hyperplanes and Kazhdan-Lusztig gamma-positivity for matroids, Int. Math. Res. Not. IMRN (2022), Paper no. rnac270, 60 pages | DOI
[4] Matroid relaxations and Kazhdan–Lusztig non-degeneracy, Algebr. Comb., Volume 5 (2022) no. 4, pp. 745-769 | DOI | MR | Zbl
[5] The Kazhdan-Lusztig polynomials of uniform matroids, Adv. in Appl. Math., Volume 122 (2021), Paper no. 102117, 24 pages | DOI | MR | Zbl
[6] The inverse Kazhdan-Lusztig polynomial of a matroid, J. Combin. Theory Ser. B, Volume 151 (2021), pp. 375-392 | DOI | MR | Zbl
[7] The Equivariant Inverse Kazhdan–Lusztig Polynomials of Uniform Matroids, SIAM J. Discrete Math., Volume 36 (2022) no. 4, pp. 2553-2569 | DOI | MR | Zbl
[8] The equivariant Kazhdan-Lusztig polynomial of a matroid, J. Combin. Theory Ser. A, Volume 150 (2017), pp. 267-294 | DOI | MR | Zbl
[9] Linear and projective representations of symmetric groups, Cambridge Tracts in Mathematics, 163, Cambridge University Press, Cambridge, 2005, xiv+277 pages | DOI | MR
[10] A combinatorial formula for Kazhdan-Lusztig polynomials of -removed uniform matroids, Electron. J. Combin., Volume 27 (2020) no. 4, Paper no. 4.7, 23 pages | DOI | MR | Zbl
[11] A combinatorial formula for Kazhdan-Lusztig polynomials of sparse paving matroids, Electron. J. Combin., Volume 28 (2021) no. 4, Paper no. 4.44, 29 pages | DOI | MR | Zbl
[12] On the asymptotic proportion of connected matroids, European J. Combin., Volume 32 (2011) no. 6, pp. 882-890 | DOI | MR | Zbl
[13] Matroid theory, Oxford Graduate Texts in Mathematics, 21, Oxford University Press, Oxford, 2011, xiv+684 pages | DOI | MR
[14] On the number of matroids compared to the number of sparse paving matroids, Electron. J. Combin., Volume 22 (2015) no. 2, Paper no. 2.51, 17 pages | MR | Zbl
[15] Equivariant incidence algebras and equivariant Kazhdan-Lusztig-Stanley theory, Algebr. Comb., Volume 4 (2021) no. 4, pp. 675-681 | DOI | Numdam | MR | Zbl
[16] The -polynomial of a matroid, Electron. J. Combin., Volume 25 (2018) no. 1, Paper no. 1.26, 21 pages | MR | Zbl
[17] SageMath, the Sage Mathematics Software System (Version 9.5.0) (2022) (https://www.sagemath.org)
[18] Matroid theory, L. M. S. Monographs, No. 8, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976, xi+433 pages | MR
Cited by Sources: