Equivariant Kazhdan–Lusztig theory of paving matroids
Algebraic Combinatorics, Volume 6 (2023) no. 3, pp. 677-688.

We study the way in which equivariant Kazhdan–Lusztig polynomials, equivariant inverse Kazhdan–Lusztig polynomials, and equivariant Z-polynomials of matroids change under the operation of relaxation of a collection of stressed hyperplanes. This allows us to compute these polynomials for arbitrary paving matroids, which we do in a number of examples, including various matroids associated with Steiner systems that admit actions of Mathieu groups.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.281
Classification: 05B35, 20C15
Keywords: Paving matroids, Kazhdan–Lusztig, characters of groups

Karn, Trevor 1; Nasr, George D. 2; Proudfoot, Nicholas 2; Vecchi, Lorenzo 3

1 University of Minnesota School of Mathematics Minneapolis MN 55455 (USA)
2 University of Oregon Department of Mathematics Eugene OR 97403 (USA)
3 Universitá di Bologna Dipartimento di Matematica Bologna 40126 (Italy)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2023__6_3_677_0,
     author = {Karn, Trevor and Nasr, George D. and Proudfoot, Nicholas and Vecchi, Lorenzo},
     title = {Equivariant {Kazhdan{\textendash}Lusztig} theory of paving matroids},
     journal = {Algebraic Combinatorics},
     pages = {677--688},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {3},
     year = {2023},
     doi = {10.5802/alco.281},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.281/}
}
TY  - JOUR
AU  - Karn, Trevor
AU  - Nasr, George D.
AU  - Proudfoot, Nicholas
AU  - Vecchi, Lorenzo
TI  - Equivariant Kazhdan–Lusztig theory of paving matroids
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 677
EP  - 688
VL  - 6
IS  - 3
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.281/
DO  - 10.5802/alco.281
LA  - en
ID  - ALCO_2023__6_3_677_0
ER  - 
%0 Journal Article
%A Karn, Trevor
%A Nasr, George D.
%A Proudfoot, Nicholas
%A Vecchi, Lorenzo
%T Equivariant Kazhdan–Lusztig theory of paving matroids
%J Algebraic Combinatorics
%D 2023
%P 677-688
%V 6
%N 3
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.281/
%R 10.5802/alco.281
%G en
%F ALCO_2023__6_3_677_0
Karn, Trevor; Nasr, George D.; Proudfoot, Nicholas; Vecchi, Lorenzo. Equivariant Kazhdan–Lusztig theory of paving matroids. Algebraic Combinatorics, Volume 6 (2023) no. 3, pp. 677-688. doi : 10.5802/alco.281. https://alco.centre-mersenne.org/articles/10.5802/alco.281/

[1] Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; Wilson, R. A. 𝔸𝕋𝕃𝔸𝕊 of finite groups. Maximal subgroups and ordinary characters for simple groups, Oxford University Press, Eynsham, 1985, xxxiv+252 pages (with computational assistance from J. G. Thackray) | MR

[2] Elias, Ben; Proudfoot, Nicholas; Wakefield, Max The Kazhdan-Lusztig polynomial of a matroid, Adv. Math., Volume 299 (2016), pp. 36-70 | DOI | MR | Zbl

[3] Ferroni, Luis; Nasr, George D.; Vecchi, Lorenzo Stressed hyperplanes and Kazhdan-Lusztig gamma-positivity for matroids, Int. Math. Res. Not. IMRN (2022), Paper no. rnac270, 60 pages | DOI

[4] Ferroni, Luis; Vecchi, Lorenzo Matroid relaxations and Kazhdan–Lusztig non-degeneracy, Algebr. Comb., Volume 5 (2022) no. 4, pp. 745-769 | DOI | MR | Zbl

[5] Gao, Alice L. L.; Lu, Linyuan; Xie, Matthew H. Y.; Yang, Arthur L. B.; Zhang, Philip B. The Kazhdan-Lusztig polynomials of uniform matroids, Adv. in Appl. Math., Volume 122 (2021), Paper no. 102117, 24 pages | DOI | MR | Zbl

[6] Gao, Alice L. L.; Xie, Matthew H. Y. The inverse Kazhdan-Lusztig polynomial of a matroid, J. Combin. Theory Ser. B, Volume 151 (2021), pp. 375-392 | DOI | MR | Zbl

[7] Gao, Alice L. L.; Xie, Matthew H. Y.; Yang, Arthur L. B. The Equivariant Inverse Kazhdan–Lusztig Polynomials of Uniform Matroids, SIAM J. Discrete Math., Volume 36 (2022) no. 4, pp. 2553-2569 | DOI | MR | Zbl

[8] Gedeon, Katie; Proudfoot, Nicholas; Young, Benjamin The equivariant Kazhdan-Lusztig polynomial of a matroid, J. Combin. Theory Ser. A, Volume 150 (2017), pp. 267-294 | DOI | MR | Zbl

[9] Kleshchev, Alexander Linear and projective representations of symmetric groups, Cambridge Tracts in Mathematics, 163, Cambridge University Press, Cambridge, 2005, xiv+277 pages | DOI | MR

[10] Lee, Kyungyong; Nasr, George D.; Radcliffe, Jamie A combinatorial formula for Kazhdan-Lusztig polynomials of ρ-removed uniform matroids, Electron. J. Combin., Volume 27 (2020) no. 4, Paper no. 4.7, 23 pages | DOI | MR | Zbl

[11] Lee, Kyungyong; Nasr, George D.; Radcliffe, Jamie A combinatorial formula for Kazhdan-Lusztig polynomials of sparse paving matroids, Electron. J. Combin., Volume 28 (2021) no. 4, Paper no. 4.44, 29 pages | DOI | MR | Zbl

[12] Mayhew, Dillon; Newman, Mike; Welsh, Dominic; Whittle, Geoff On the asymptotic proportion of connected matroids, European J. Combin., Volume 32 (2011) no. 6, pp. 882-890 | DOI | MR | Zbl

[13] Oxley, James Matroid theory, Oxford Graduate Texts in Mathematics, 21, Oxford University Press, Oxford, 2011, xiv+684 pages | DOI | MR

[14] Pendavingh, Rudi; van der Pol, Jorn On the number of matroids compared to the number of sparse paving matroids, Electron. J. Combin., Volume 22 (2015) no. 2, Paper no. 2.51, 17 pages | MR | Zbl

[15] Proudfoot, Nicholas Equivariant incidence algebras and equivariant Kazhdan-Lusztig-Stanley theory, Algebr. Comb., Volume 4 (2021) no. 4, pp. 675-681 | DOI | Numdam | MR | Zbl

[16] Proudfoot, Nicholas; Xu, Yuan; Young, Ben The Z-polynomial of a matroid, Electron. J. Combin., Volume 25 (2018) no. 1, Paper no. 1.26, 21 pages | MR | Zbl

[17] Sage Developers SageMath, the Sage Mathematics Software System (Version 9.5.0) (2022) (https://www.sagemath.org)

[18] Welsh, D. J. A. Matroid theory, L. M. S. Monographs, No. 8, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976, xi+433 pages | MR

Cited by Sources: