Equivariant log-concavity of graph matchings
Algebraic Combinatorics, Volume 6 (2023) no. 3, pp. 615-622.

For any graph, we show that the graded permutation representation of the graph automorphism group given by matchings is strongly equivariantly log-concave. The proof gives a family of equivariant injections inspired by a combinatorial map of Krattenthaler and reduces to the equivariant hard Lefschetz theorem.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.284
Classification: 10X99, 14A12, 11L05
Keywords: Equivariant log-concavity, graph matchings, the hard Lefschetz theorem

Li, Shiyue 1

1 Brown University Departmenet of Mathematics 151 Thayer Street Providence RI 02912 (USA)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2023__6_3_615_0,
     author = {Li, Shiyue},
     title = {Equivariant log-concavity of graph matchings},
     journal = {Algebraic Combinatorics},
     pages = {615--622},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {3},
     year = {2023},
     doi = {10.5802/alco.284},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.284/}
}
TY  - JOUR
AU  - Li, Shiyue
TI  - Equivariant log-concavity of graph matchings
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 615
EP  - 622
VL  - 6
IS  - 3
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.284/
DO  - 10.5802/alco.284
LA  - en
ID  - ALCO_2023__6_3_615_0
ER  - 
%0 Journal Article
%A Li, Shiyue
%T Equivariant log-concavity of graph matchings
%J Algebraic Combinatorics
%D 2023
%P 615-622
%V 6
%N 3
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.284/
%R 10.5802/alco.284
%G en
%F ALCO_2023__6_3_615_0
Li, Shiyue. Equivariant log-concavity of graph matchings. Algebraic Combinatorics, Volume 6 (2023) no. 3, pp. 615-622. doi : 10.5802/alco.284. https://alco.centre-mersenne.org/articles/10.5802/alco.284/

[1] Braden, Tom; Huh, June; Matherne, Jacob P.; Proudfoot, Nicholas; Wang, Botong Singular Hodge theory for combinatorial geometries, 2023 | arXiv

[2] Gedeon, Katie; Proudfoot, Nicholas; Young, Benjamin The equivariant Kazhdan–Lusztig polynomial of a matroid, J. Combin. Theory Ser. A., Volume 150 (2017), pp. 267-294 | DOI | MR | Zbl

[3] Gui, Tao On the equivariant log-concavity for the cohomology of the flag varieties, 2022 | arXiv

[4] Gui, Tao; Xiong, Rui Equivariant log-concavity and equivariant Kähler packages, 2022 | arXiv

[5] Hara, Masao; Watanabe, Junzo The determinants of certain matrices arising from the Boolean lattice, Discrete Math., Volume 308 (2008) no. 23, pp. 5815-5822 | DOI | MR | Zbl

[6] Harima, Tadahito; Maeno, Toshiaki; Morita, Hideaki; Numata, Yasuhide; Wachi, Akihito; Watanabe, Junzo Lefschetz properties, The Lefschetz Properties, Springer, 2013, pp. 97-140 | DOI

[7] Heilmann, Ole J.; Lieb, Elliott H. Theory of monomer-dimer systems, Commun. Math. Phys., Volume 25 (1972) no. 3, pp. 190-232 | DOI | MR | Zbl

[8] Krattenthaler, Christian Combinatorial Proof of the Log-Concavity of the Sequence of Matching Numbers, J. Combin. Theory Ser. A., Volume 74 (1996) no. 2, pp. 351-354 | DOI | MR | Zbl

[9] Matherne, Jacob P.; Miyata, Dane; Proudfoot, Nicholas; Ramos, Eric Equivariant Log Concavity and Representation Stability, Int. Math. Res. Not. IMRN (2023) no. 5, pp. 3885-3906 | DOI | MR | Zbl

[10] Miyata, Dane; Proudfoot, Nicholas; Ramos, Eric The categorical graph minor theorem, 2022 | arXiv

[11] Miyata, Dane; Ramos, Eric The graph minor theorem in topological combinatorics, 2023 | arXiv

[12] Plummer, Martin D.; Lovász, László Matching Theory, ISSN, Elsevier Science, 1986

[13] Proudfoot, Nicholas; Xu, Yuan; Young, Ben The Z-polynomial of a matroid, Electron. J. Combin., Volume 25 (2018) no. 1, Paper no. 1.26, 21 pages | DOI | MR | Zbl

[14] Stanley, Richard P. Weyl Groups, the Hard Lefschetz Theorem, and the Sperner Property, SIAM Journal on Algebraic Discrete Methods, Volume 1 (1980) no. 2, pp. 168-184 | DOI | MR | Zbl

[15] Stanley, Richard P. Combinatorial applications of the hard Lefschetz theorem, Proceedings of the International Congress of Mathematicians, Volume 1 (1983), p. 2

[16] Stanley, Richard P. Algebraic Combinatorics, Springer, Volume 20 (2013), p. 22 | Zbl

[17] Stanton, Dennis; White, Dennis Constructive Combinatorics, Springer-Verlag, Berlin, Heidelberg, 1986 | DOI

Cited by Sources: