For any graph, we show that the graded permutation representation of the graph automorphism group given by matchings is strongly equivariantly log-concave. The proof gives a family of equivariant injections inspired by a combinatorial map of Krattenthaler and reduces to the equivariant hard Lefschetz theorem.
Revised:
Accepted:
Published online:
Keywords: Equivariant log-concavity, graph matchings, the hard Lefschetz theorem
Li, Shiyue 1
@article{ALCO_2023__6_3_615_0, author = {Li, Shiyue}, title = {Equivariant log-concavity of graph matchings}, journal = {Algebraic Combinatorics}, pages = {615--622}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {3}, year = {2023}, doi = {10.5802/alco.284}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.284/} }
TY - JOUR AU - Li, Shiyue TI - Equivariant log-concavity of graph matchings JO - Algebraic Combinatorics PY - 2023 SP - 615 EP - 622 VL - 6 IS - 3 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.284/ DO - 10.5802/alco.284 LA - en ID - ALCO_2023__6_3_615_0 ER -
Li, Shiyue. Equivariant log-concavity of graph matchings. Algebraic Combinatorics, Volume 6 (2023) no. 3, pp. 615-622. doi : 10.5802/alco.284. https://alco.centre-mersenne.org/articles/10.5802/alco.284/
[1] Singular Hodge theory for combinatorial geometries, 2023 | arXiv
[2] The equivariant Kazhdan–Lusztig polynomial of a matroid, J. Combin. Theory Ser. A., Volume 150 (2017), pp. 267-294 | DOI | MR | Zbl
[3] On the equivariant log-concavity for the cohomology of the flag varieties, 2022 | arXiv
[4] Equivariant log-concavity and equivariant Kähler packages, 2022 | arXiv
[5] The determinants of certain matrices arising from the Boolean lattice, Discrete Math., Volume 308 (2008) no. 23, pp. 5815-5822 | DOI | MR | Zbl
[6] Lefschetz properties, The Lefschetz Properties, Springer, 2013, pp. 97-140 | DOI
[7] Theory of monomer-dimer systems, Commun. Math. Phys., Volume 25 (1972) no. 3, pp. 190-232 | DOI | MR | Zbl
[8] Combinatorial Proof of the Log-Concavity of the Sequence of Matching Numbers, J. Combin. Theory Ser. A., Volume 74 (1996) no. 2, pp. 351-354 | DOI | MR | Zbl
[9] Equivariant Log Concavity and Representation Stability, Int. Math. Res. Not. IMRN (2023) no. 5, pp. 3885-3906 | DOI | MR | Zbl
[10] The categorical graph minor theorem, 2022 | arXiv
[11] The graph minor theorem in topological combinatorics, 2023 | arXiv
[12] Matching Theory, ISSN, Elsevier Science, 1986
[13] The -polynomial of a matroid, Electron. J. Combin., Volume 25 (2018) no. 1, Paper no. 1.26, 21 pages | DOI | MR | Zbl
[14] Weyl Groups, the Hard Lefschetz Theorem, and the Sperner Property, SIAM Journal on Algebraic Discrete Methods, Volume 1 (1980) no. 2, pp. 168-184 | DOI | MR | Zbl
[15] Combinatorial applications of the hard Lefschetz theorem, Proceedings of the International Congress of Mathematicians, Volume 1 (1983), p. 2
[16] Algebraic Combinatorics, Springer, Volume 20 (2013), p. 22 | Zbl
[17] Constructive Combinatorics, Springer-Verlag, Berlin, Heidelberg, 1986 | DOI
Cited by Sources: