We present a bijection between the set of standard Young tableaux of staircase minus rectangle shape , , and the set of marked shifted standard Young tableaux of a certain shifted shape . Numerically, this result is due to DeWitt (2012). Combined with other known bijections this gives a bijective proof of the product formula for . This resolves an open problem by Morales, Pak and Panova (2019), and allows an efficient random sampling from . Other applications include a bijection for semistandard Young tableaux, and a bijective proof of Stembridge’s symmetry of LR–coefficients of the staircase shape. We also extend these results to set-valued standard Young tableaux in the combinatorics of -theory, leading to new proofs of results by Lewis and Marberg (2019) and Abney-McPeek, An and Ng (2020).
Revised:
Accepted:
Published online:
Keywords: tableau, shifted tableau, Schur P-function, Worley–Sagan insertion, mixed shifted insertion, shifted Hecke insertion, Knuth class, shifted Knuth class, K-Knuth class, queer Lie superalgebra
Hamaker, Zachary 1; Morales, Alejandro H. 2; Pak, Igor 3; Serrano, Luis 4; Williams, Nathan 5
@article{ALCO_2023__6_4_1095_0, author = {Hamaker, Zachary and Morales, Alejandro H. and Pak, Igor and Serrano, Luis and Williams, Nathan}, title = {Bijecting hidden symmetries for skew staircase shapes}, journal = {Algebraic Combinatorics}, pages = {1095--1118}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {4}, year = {2023}, doi = {10.5802/alco.285}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.285/} }
TY - JOUR AU - Hamaker, Zachary AU - Morales, Alejandro H. AU - Pak, Igor AU - Serrano, Luis AU - Williams, Nathan TI - Bijecting hidden symmetries for skew staircase shapes JO - Algebraic Combinatorics PY - 2023 SP - 1095 EP - 1118 VL - 6 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.285/ DO - 10.5802/alco.285 LA - en ID - ALCO_2023__6_4_1095_0 ER -
%0 Journal Article %A Hamaker, Zachary %A Morales, Alejandro H. %A Pak, Igor %A Serrano, Luis %A Williams, Nathan %T Bijecting hidden symmetries for skew staircase shapes %J Algebraic Combinatorics %D 2023 %P 1095-1118 %V 6 %N 4 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.285/ %R 10.5802/alco.285 %G en %F ALCO_2023__6_4_1095_0
Hamaker, Zachary; Morales, Alejandro H.; Pak, Igor; Serrano, Luis; Williams, Nathan. Bijecting hidden symmetries for skew staircase shapes. Algebraic Combinatorics, Volume 6 (2023) no. 4, pp. 1095-1118. doi : 10.5802/alco.285. https://alco.centre-mersenne.org/articles/10.5802/alco.285/
[1] The Stembridge equality for skew stable Grothendieck polynomials and skew dual stable Grothendieck polynomials, Algebr. Comb., Volume 5 (2022) no. 2, pp. 187-208 | MR | Zbl
[2] The monomial expansion of determinantal symmetric functions, Proc. Roy. Soc. Edinburgh Sect. A, Volume 61 (1943), pp. 300-310 | MR | Zbl
[3] A refined laser method and faster matrix multiplication, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), [Society for Industrial and Applied Mathematics (SIAM)], Philadelphia, PA (2021), pp. 522-539 | DOI
[4] Random sorting networks, Adv. Math., Volume 215 (2007) no. 2, pp. 839-868 | DOI | MR | Zbl
[5] Staircase skew Schur functions are Schur -positive, J. Algebraic Combin., Volume 36 (2012) no. 3, pp. 409-423 | DOI | MR | Zbl
[6] Triple multiplicities for and the spectrum of the exterior algebra of the adjoint representation, J. Algebraic Combin., Volume 1 (1992) no. 1, pp. 7-22 | DOI | MR | Zbl
[7] Some combinatorial properties of Schubert polynomials, J. Algebraic Combin., Volume 2 (1993) no. 4, pp. 345-374 | DOI | MR | Zbl
[8] Enriched set-valued -partitions and shifted stable Grothendieck polynomials, Math. Z., Volume 299 (2021) no. 3-4, pp. 1929-1972 | MR | Zbl
[9] Faster random generation of linear extensions, Discrete Math., Volume 201 (1999) no. 1-3, pp. 81-88 | DOI | MR | Zbl
[10] -theory of minuscule varieties, J. Reine Angew. Math., Volume 719 (2016), pp. 133-171 | DOI | MR | Zbl
[11] Lie groups, Graduate Texts in Mathematics, 225, Springer, New York, 2013, xiv+551 pages | DOI
[12] Crystals and Schur -positive expansions, Electron. J. Combin., Volume 25 (2018) no. 3, Paper no. 3.7, 27 pages | MR
[13] The weighted hook length formula, J. Combin. Theory Ser. A, Volume 118 (2011) no. 6, pp. 1703-1717 | DOI | MR | Zbl
[14] -theoretic Schubert calculus for and jeu de taquin for shifted increasing tableaux, J. Reine Angew. Math., Volume 690 (2014), pp. 51-63 | DOI | MR | Zbl
[15] Identities Relating Schur s-Functions and Q-Functions, Ph. D. Thesis, University of Michigan (2012), 67 pages https://deepblue.lib.umich.edu/handle/2027.42/93841 | MR
[16] Set-valued tableaux and generalized Catalan numbers, Australas. J. Combin., Volume 72 (2018), pp. 55-69 | MR | Zbl
[17] Balanced tableaux, Adv. in Math., Volume 63 (1987) no. 1, pp. 42-99 | DOI | MR | Zbl
[18] The degree formula for the skew-representations of the symmetric group, Proc. Amer. Math. Soc., Volume 4 (1953), pp. 740-744 | DOI | MR | Zbl
[19] A bijective proof of the hook-length formula for shifted standard tableaux, 2001 | arXiv
[20] Determinantal and Pfaffian identities for ninth variation skew Schur functions and -functions, European J. Combin., Volume 93 (2021), Paper no. 103271, 31 pages | MR | Zbl
[21] -Knuth equivalence for increasing tableaux, Electron. J. Combin., Volume 23 (2016) no. 1, Paper no. 1.40, 37 pages | MR | Zbl
[22] Multipartite -partitions and inner products of skew Schur functions, Combinatorics and algebra (Boulder, Colo., 1983) (Contemp. Math.), Volume 34, Amer. Math. Soc., Providence, RI, 1984, pp. 289-317 | DOI | MR | Zbl
[23] Limit shapes of large skew Young tableaux and a modification of the TASEP process, 2020 | arXiv
[24] Hopf Algebras in Combinatorics, 2014 (an expanded version with solutions is available in the ancillary file, 1203 pp) | arXiv
[25] On mixed insertion, symmetry, and shifted Young tableaux, J. Combin. Theory Ser. A, Volume 50 (1989) no. 2, pp. 196-225 | DOI | MR | Zbl
[26] Dual equivalence with applications, including a conjecture of Proctor, Discrete Math., Volume 99 (1992) no. 1-3, pp. 79-113 | DOI | MR | Zbl
[27] Shifted Hecke insertion and the -theory of , J. Combin. Theory Ser. A, Volume 151 (2017), pp. 207-240 | DOI | MR
[28] Involution words II: braid relations and atomic structures, J. Algebraic Combin., Volume 45 (2017) no. 3, pp. 701-743 | DOI | MR | Zbl
[29] Involution words: counting problems and connections to Schubert calculus for symmetric orbit closures, J. Combin. Theory Ser. A, Volume 160 (2018), pp. 217-260 | DOI | MR | Zbl
[30] Schur -positivity and involution Stanley symmetric functions, Int. Math. Res. Not. IMRN (2019) no. 17, pp. 5389-5440 | DOI | MR | Zbl
[31] Fixed-point-free involutions and Schur -positivity, J. Comb., Volume 11 (2020) no. 1, pp. 65-110 | MR | Zbl
[32] Mixed Shifted Insertion, 2021 https://cocalc.com/share/b8a5580510561b4e7f0950cdbab7c6ab1e73eaac/Mixed%20Shifted%20Insertion.sagews?viewer=share Mixed Shifted Insertion.sagews (March 26, 2021), SageMath
[33] Doppelgängers: bijections of plane partitions, Int. Math. Res. Not. IMRN (2020) no. 2, pp. 487-540 | DOI | Zbl
[34] On a bijection between Littlewood-Richardson fillings of conjugate shape, J. Combin. Theory Ser. A, Volume 60 (1992) no. 1, pp. 1-18 | DOI | MR | Zbl
[35] Crystal analysis of type Stanley symmetric functions, Electron. J. Combin., Volume 24 (2017) no. 3, Paper no. 3.51, 32 pages | MR | Zbl
[36] -crystal structure on primed tableaux and on signed unimodal factorizations of reduced words of type , Publ. Res. Inst. Math. Sci., Volume 55 (2019) no. 2, pp. 369-399 | DOI | MR | Zbl
[37] -theoretic analogues of factorial Schur - and -functions, Adv. Math., Volume 243 (2013), pp. 22-66 | DOI | MR | Zbl
[38] Random generation of combinatorial structures from a uniform distribution, Theoret. Comput. Sci., Volume 43 (1986) no. 2-3, pp. 169-188 | DOI | MR | Zbl
[39] A -analog of the hook walk algorithm for random Young tableaux, J. Algebraic Combin., Volume 2 (1993) no. 4, pp. 383-396 | DOI | MR | Zbl
[40] The weighted hook length formula III: Shifted tableaux, Electron. J. Combin., Volume 18 (2011) no. 1, Paper no. 101, 29 pages | MR | Zbl
[41] The major index generating function of standard Young tableaux of shapes of the form “staircase minus rectangle”, Ramanujan 125 (Contemp. Math.), Volume 627, Amer. Math. Soc., Providence, RI, 2014, pp. 111-122 | MR | Zbl
[42]
, 2023 (in preparation)[43] On random shifted standard Young tableaux and 132-avoiding sorting networks, Algebr. Comb., Volume 3 (2020) no. 6, pp. 1231-1258 | Numdam | MR | Zbl
[44] Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995, x+475 pages (With contributions by A. Zelevinsky, Oxford Science Publications)
[45] A symplectic refinement of shifted Hecke insertion, J. Combin. Theory Ser. A, Volume 173 (2020), Paper no. 105216, 50 pages | MR | Zbl
[46] -theory formulas for orthogonal and symplectic orbit closures, Adv. Math., Volume 372 (2020), Paper no. 107299, 43 pages | MR | Zbl
[47] On some properties of symplectic Grothendieck polynomials, J. Pure Appl. Algebra, Volume 225 (2021) no. 1, Paper no. 106463, 22 pages | MR | Zbl
[48] Reduced word enumeration, complexity, and randomization, Electron. J. Combin., Volume 29 (2022) no. 2, Paper no. 2.46, 28 pages | MR | Zbl
[49] Hook formulas for skew shapes I. -analogues and bijections, J. Combin. Theory Ser. A, Volume 154 (2018), pp. 350-405 | DOI | MR | Zbl
[50] Hook formulas for skew shapes III. Multivariate and product formulas, Algebr. Comb., Volume 2 (2019) no. 5, pp. 815-861 | Numdam | MR | Zbl
[51] A crystal on decreasing factorizations in the 0-Hecke monoid, Electron. J. Combin., Volume 27 (2020) no. 2, Paper no. 2.29, 48 pages | MR | Zbl
[52] Combinatorial algorithms (Computer Science and Applied Mathematics), 1978, p. xv+302 (For computers and calculators) | Zbl
[53] Hidden symmetries of weighted lozenge tilings, Electron. J. Combin., Volume 27 (2020) no. 3, Paper no. 3.44, 19 pages | MR | Zbl
[54] Combinatorics and geometry of Littlewood-Richardson cones, European J. Combin., Volume 26 (2005) no. 6, pp. 995-1008 | MR | Zbl
[55] Reductions of Young tableau bijections, SIAM J. Discrete Math., Volume 24 (2010) no. 1, pp. 113-145 | MR | Zbl
[56] Combinatorics of -theory via a -theoretic Poirier-Reutenauer bialgebra, Discrete Math., Volume 339 (2016) no. 3, pp. 1095-1115 | DOI | MR | Zbl
[57] Dual filtered graphs, Algebr. Comb., Volume 1 (2018) no. 4, pp. 441-500 | Numdam | MR | Zbl
[58] Limit shapes for random square Young tableaux, Adv. in Appl. Math., Volume 38 (2007) no. 2, pp. 164-209 | DOI | MR | Zbl
[59] A marvellous embedding of the Lagrangian Grassmannian, J. Combin. Theory Ser. A, Volume 155 (2018), pp. 1-26 | DOI | MR | Zbl
[60] Coincidences among skew Schur functions, Adv. Math., Volume 216 (2007) no. 1, pp. 118-152 | DOI | MR | Zbl
[61] Poset edge densities, nearly reduced words, and barely set-valued tableaux, J. Combin. Theory Ser. A, Volume 158 (2018), pp. 66-125 | DOI | MR | Zbl
[62] On selecting a random shifted Young tableau, J. Algorithms, Volume 1 (1980) no. 3, pp. 213-234 | DOI | MR | Zbl
[63] Shifted tableaux, Schur -functions, and a conjecture of R. Stanley, J. Combin. Theory Ser. A, Volume 45 (1987) no. 1, pp. 62-103 | DOI | MR | Zbl
[64] The symmetric group, Graduate Texts in Mathematics, 203, Springer-Verlag, New York, 2001, xvi+238 pages (Representations, combinatorial algorithms, and symmetric functions) | DOI
[65] Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics, 2008 (http://combinat.sagemath.org)
[66] Asymptotic and exact results on the complexity of the Novelli-Pak-Stoyanovskii algorithm, Electron. J. Combin., Volume 24 (2017) no. 2, Paper no. 2.28, 33 pages | MR | Zbl
[67] The shifted plactic monoid, Math. Z., Volume 266 (2010) no. 2, pp. 363-392 | DOI | MR | Zbl
[68] Enumerative Combinatorics. Vol. 2, Cambridge University Press, 1999 | DOI
[69] Enumerative Combinatorics. Vol. 1, Cambridge University Press, 2012
[70] Private Communication, Email to V. Reiner, 2006 (available at https://tinyurl.com/vcjaj845)
[71] Shifted tableaux and the projective representations of symmetric groups, Adv. Math., Volume 74 (1989) no. 1, pp. 87-134 | DOI | MR | Zbl
[72] On the fully commutative elements of Coxeter groups, J. Algebraic Combin., Volume 5 (1996) no. 4, pp. 353-385 | DOI | MR | Zbl
[73] Dimer model, bead and standard Young tableaux: finite cases and limit shapes, 2018 | arXiv
[74] An -symmetric Littlewood-Richardson rule, Math. Res. Lett., Volume 15 (2008) no. 5, pp. 1027-1037 | DOI | MR | Zbl
[75] Longest increasing subsequences, Plancherel-type measure and the Hecke insertion algorithm, Adv. in Appl. Math., Volume 46 (2011) no. 1-4, pp. 610-642 | DOI | MR | Zbl
[76] A combinatorial problem, Michigan Math. J., Volume 1 (1952), pp. 81-88 | DOI | Zbl
[77] Determinant algorithms for random planar structures, Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (New Orleans, LA, 1997), ACM, New York (1997), pp. 258-267 | MR | Zbl
[78] A theory of shifted Young tableaux, Ph. D. Thesis, Massachusetts Institute of Technology (1984) https://dspace.mit.edu/handle/1721.1/15599 | MR
[79] Diagrams of Affine Permutations and Their Labellings, Ph. D. Thesis, Massachusetts Institute of Technology (2013) https://dspace.mit.edu/handle/1721.1/83702 | MR
[80] A generalization of the Littlewood-Richardson rule and the Robinson-Schensted-Knuth correspondence, J. Algebra, Volume 69 (1981) no. 1, pp. 82-94 | DOI | MR | Zbl
Cited by Sources: