This paper concerns the symmetric and anti-symmetric Kronecker products of characters of the symmetric groups. We provide new closed formulas for decomposing these products, unexpected connections with 2-modular decomposition numbers, Catalan combinatorics, and a refinement of the famous Saxl conjecture.
Revised:
Accepted:
Published online:
Keywords: Symmetric tensor squares, Kronecker product, symmetric groups, character theory, decomposition numbers, Catalan combinatorics.
Bessenrodt, Christine ; Bowman, Chris 1
@article{ALCO_2023__6_4_863_0, author = {Bessenrodt, Christine and Bowman, Chris}, title = {Splitting {Kronecker} squares, 2-decomposition numbers, {Catalan} combinatorics, and the {Saxl} conjecture}, journal = {Algebraic Combinatorics}, pages = {863--899}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {4}, year = {2023}, doi = {10.5802/alco.294}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.294/} }
TY - JOUR AU - Bessenrodt, Christine AU - Bowman, Chris TI - Splitting Kronecker squares, 2-decomposition numbers, Catalan combinatorics, and the Saxl conjecture JO - Algebraic Combinatorics PY - 2023 SP - 863 EP - 899 VL - 6 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.294/ DO - 10.5802/alco.294 LA - en ID - ALCO_2023__6_4_863_0 ER -
%0 Journal Article %A Bessenrodt, Christine %A Bowman, Chris %T Splitting Kronecker squares, 2-decomposition numbers, Catalan combinatorics, and the Saxl conjecture %J Algebraic Combinatorics %D 2023 %P 863-899 %V 6 %N 4 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.294/ %R 10.5802/alco.294 %G en %F ALCO_2023__6_4_863_0
Bessenrodt, Christine; Bowman, Chris. Splitting Kronecker squares, 2-decomposition numbers, Catalan combinatorics, and the Saxl conjecture. Algebraic Combinatorics, Volume 6 (2023) no. 4, pp. 863-899. doi : 10.5802/alco.294. https://alco.centre-mersenne.org/articles/10.5802/alco.294/
[1] A combinatorial interpretation for the coefficients in the Kronecker product , Sém. Lothar. Combin., Volume 54A (2005/07), Paper no. B54Af, 29 pages | MR | Zbl
[2] Critical classes, Kronecker products of spin characters, and the Saxl conjecture, Algebr. Comb., Volume 1 (2018) no. 3, pp. 353-369 | Numdam | MR | Zbl
[3] On the Durfee size of Kronecker products of characters of the symmetric group and its double covers, J. Algebra, Volume 280 (2004) no. 1, pp. 132-144 | DOI | MR | Zbl
[4] Multiplicity-free Kronecker products of characters of the symmetric groups, Adv. Math., Volume 322 (2017), pp. 473-529 | DOI | MR | Zbl
[5] On Kronecker products of spin characters of the double covers of the symmetric groups, Pacific J. Math., Volume 198 (2001) no. 2, pp. 295-305 | DOI | MR | Zbl
[6] Kronecker coefficients for one hook shape, Sém. Lothar. Combin., Volume 77 (2016), Paper no. B77c, 40 pages | MR | Zbl
[7] The uniqueness of plethystic factorisation, Trans. Amer. Math. Soc., Volume 373 (2020) no. 3, pp. 1653-1666 | DOI | MR | Zbl
[8] Expressions for Catalan Kronecker products, Pacific J. Math., Volume 248 (2010) no. 1, pp. 31-48 | DOI | MR | Zbl
[9] Nonvanishing of Kronecker coefficients for rectangular shapes, Adv. Math., Volume 227 (2011) no. 5, pp. 2082-2091 | DOI | MR | Zbl
[10] Permanent versus determinant: not via saturations, Proc. Amer. Math. Soc., Volume 145 (2017) no. 3, pp. 1247-1258 | DOI | MR | Zbl
[11] No occurrence obstructions in geometric complexity theory, J. Amer. Math. Soc., Volume 32 (2019) no. 1, pp. 163-193 | DOI | MR | Zbl
[12] An overview of mathematical issues arising in the geometric complexity theory approach to , SIAM J. Comput., Volume 40 (2011) no. 4, pp. 1179-1209 | DOI | MR | Zbl
[13] Nonzero Kronecker coefficients and what they tell us about spectra, Comm. Math. Phys., Volume 270 (2007) no. 3, pp. 575-585 | DOI | MR | Zbl
[14] The spectra of quantum states and the Kronecker coefficients of the symmetric group, Comm. Math. Phys., Volume 261 (2006) no. 3, pp. 789-797 | DOI | MR | Zbl
[15] Recoupling coefficients and quantum entropies, Ann. Henri Poincaré, Volume 19 (2018) no. 2, pp. 385-410 | DOI | MR | Zbl
[16] Methods of representation theory. Vol. I, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981, xxi+819 pages (With applications to finite groups and orders.)
[17] On the Kronecker product of characters, J. Algebra, Volume 154 (1993) no. 1, pp. 125-140 | DOI | MR | Zbl
[18] Characters of finite groups, W. A. Benjamin, Inc., New York-Amsterdam, 1967, viii+186 pages
[19] Kronecker coefficients via symmetric functions and constant term identities, Internat. J. Algebra Comput., Volume 22 (2012) no. 3, Paper no. 1250022, 44 pages | MR | Zbl
[20] Geometric complexity theory and matrix powering, Differential Geom. Appl., Volume 55 (2017), pp. 106-127 | DOI | MR | Zbl
[21] Conjugacy action, induced representations and the Steinberg square for simple groups of Lie type, Proc. Lond. Math. Soc. (3), Volume 106 (2013) no. 4, pp. 908-930 | DOI | MR | Zbl
[22] Character theory of finite groups, De Gruyter Expositions in Mathematics, 25, Walter de Gruyter & Co., Berlin, 1998, vi+618 pages
[23] The Saxl conjecture and the dominance order, Discrete Math., Volume 338 (2015) no. 11, pp. 1970-1975 | DOI | MR | Zbl
[24] Rectangular Kronecker coefficients and plethysms in geometric complexity theory, Adv. Math., Volume 319 (2017), pp. 40-66 | DOI | MR | Zbl
[25] Character theory of finite groups, Pure and Applied Mathematics, 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976, xii+303 pages | MR
[26] The representation theory of the symmetric groups, Lecture Notes in Mathematics, 682, Springer, Berlin, 1978, v+156 pages
[27] The representation theory of the symmetric group, Encyclopedia of Mathematics and Its Applications, 16, Addison-Wesley Publishing Co., Reading, Mass., 1981, xxviii+510 pages (With a foreword by P. M. Cohn., With an introduction by Gilbert de B. Robinson.)
[28] A simplified Kronecker rule for one hook shape, Proc. Amer. Math. Soc., Volume 145 (2017) no. 9, pp. 3657-3664 | MR | Zbl
[29] On the irreducibility of alternating powers and symmetric squares, Arch. Math. (Basel), Volume 63 (1994) no. 3, pp. 211-215 | DOI | MR | Zbl
[30] Irreducibility of alternating and symmetric squares, Manuscripta Math., Volume 95 (1998) no. 2, pp. 169-180 | DOI | MR | Zbl
[31] Irreducibility of tensor squares, symmetric squares and alternating squares, Pacific J. Math., Volume 202 (2002) no. 2, pp. 379-427 | DOI | MR | Zbl
[32] A note on certain Kronecker coefficients, Proc. Amer. Math. Soc., Volume 138 (2010) no. 1, pp. 1-7 | DOI | MR | Zbl
[33] On rectangular Kronecker coefficients, J. Algebraic Combin., Volume 33 (2011) no. 1, pp. 153-162 | DOI | MR | Zbl
[34] Symmetric and exterior squares of hook representations, 2019 | arXiv
[36] Bounds on certain classes of Kronecker and -binomial coefficients, J. Combin. Theory Ser. A, Volume 147 (2017), pp. 1-17 | MR | Zbl
[37] Kronecker products, characters, partitions, and the tensor square conjectures, Adv. Math., Volume 288 (2016), pp. 702-731 | MR | Zbl
[38] Lie superalgebras and some characters of , Israel J. Math., Volume 195 (2013) no. 1, pp. 31-35 | DOI | MR | Zbl
[39] A formula for the Kronecker products of Schur functions of hook shapes, J. Algebra, Volume 120 (1989) no. 1, pp. 100-118 | DOI | MR | Zbl
[40] On the Kronecker product of Schur functions of two row shapes, Bull. Belg. Math. Soc. Simon Stevin, Volume 1 (1994) no. 5, pp. 649-683 | MR | Zbl
[41] Vanishing symmetric Kronecker coefficients, Beitr. Algebra Geom., Volume 61 (2020) no. 2, pp. 231-246 | DOI | MR | Zbl
[42] The Kronecker product of Schur functions indexed by two-row shapes or hook shapes, J. Algebraic Combin., Volume 14 (2001) no. 2, pp. 153-173 | DOI | MR | Zbl
[43] The complex characters of the symmetric groups that remain irreducible in subgroups, J. Algebra, Volume 111 (1987) no. 1, pp. 210-219 | DOI | MR | Zbl
[44] Linear representations of finite groups, Graduate Texts in Mathematics, 42, Springer-Verlag, New York-Heidelberg, 1977, x+170 pages | DOI | Numdam
[45] Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. I. Plenary lectures (2018), p. viii+1208 (ICM 2018, August 1–9, 2018) | DOI
[46] Positivity problems and conjectures in algebraic combinatorics, Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, pp. 295-319 | Zbl
[47] A note on skew characters of symmetric groups, Israel J. Math., Volume 221 (2017) no. 1, pp. 435-443 | DOI | MR | Zbl
[48] On symmetrized Kronecker powers and the structure of the free Lie ring, Amer. J. Math., Volume 64 (1942), pp. 371-388 | DOI | MR | Zbl
[49] A diagrammatic approach to Kronecker squares, J. Combin. Theory Ser. A, Volume 127 (2014), pp. 243-285 | DOI | MR | Zbl
[50] A course in finite group representation theory, Cambridge Studies in Advanced Mathematics, 161, Cambridge University Press, Cambridge, 2016, xi+325 pages | DOI | MR
[51] Irreducible modules for symmetric groups that are summands of their exterior square, J. Algebra, Volume 518 (2019), pp. 304-320 | DOI | MR | Zbl
[52] The character covering numbers of the alternating groups, J. Algebra, Volume 153 (1992) no. 2, pp. 357-372 | DOI | MR | Zbl
Cited by Sources: