Gessel gave a determinantal expression for certain sums of Schur functions which visually looks like the classical Jacobi–Trudi formula. We explain the commonality of these formulas using a construction of Zelevinsky involving BGG complexes and use this explanation to generalize this formula in a few different directions.
Revised:
Accepted:
Published online:
Keywords: symmetric functions, Jacobi-Trudi identity, BGG resolution
Sam, Steven V 1; Weyman, Jerzy 2
@article{ALCO_2023__6_5_1163_0, author = {Sam, Steven V and Weyman, Jerzy}, title = {Jacobi{\textendash}Trudi formulas and determinantal varieties}, journal = {Algebraic Combinatorics}, pages = {1163--1175}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {5}, year = {2023}, doi = {10.5802/alco.299}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.299/} }
TY - JOUR AU - Sam, Steven V AU - Weyman, Jerzy TI - Jacobi–Trudi formulas and determinantal varieties JO - Algebraic Combinatorics PY - 2023 SP - 1163 EP - 1175 VL - 6 IS - 5 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.299/ DO - 10.5802/alco.299 LA - en ID - ALCO_2023__6_5_1163_0 ER -
%0 Journal Article %A Sam, Steven V %A Weyman, Jerzy %T Jacobi–Trudi formulas and determinantal varieties %J Algebraic Combinatorics %D 2023 %P 1163-1175 %V 6 %N 5 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.299/ %R 10.5802/alco.299 %G en %F ALCO_2023__6_5_1163_0
Sam, Steven V; Weyman, Jerzy. Jacobi–Trudi formulas and determinantal varieties. Algebraic Combinatorics, Volume 6 (2023) no. 5, pp. 1163-1175. doi : 10.5802/alco.299. https://alco.centre-mersenne.org/articles/10.5802/alco.299/
[1] Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A, Volume 53 (1990) no. 2, pp. 257-285 | DOI | MR | Zbl
[2] Symmetry, representations, and invariants, Graduate Texts in Mathematics, 255, Springer, Dordrecht, 2009, xx+716 pages | DOI
[3] Identities for classical group characters of nearly rectangular shape, J. Algebra, Volume 209 (1998) no. 1, pp. 1-64 | DOI | MR | Zbl
[4] Lie groups: an approach through invariants and representations, Universitext, Springer, New York, 2007, xxiv+596 pages
[5] Jacobi-Trudi determinants and characters of minimal affinizations, Pacific J. Math., Volume 272 (2014) no. 1, pp. 237-244 | MR
[6] Infinite rank spinor and oscillator representations, J. Comb. Algebra, Volume 1 (2017) no. 2, pp. 145-183 | MR | Zbl
[7] Homology of Littlewood complexes, Selecta Math. (N.S.), Volume 19 (2013) no. 3, pp. 655-698 | MR | Zbl
[8] Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+581 pages | DOI
[9] Cohomology of vector bundles and syzygies, Cambridge Tracts in Mathematics, 149, Cambridge University Press, Cambridge, 2003, xiv+371 pages | DOI
[10] Resolvents, dual pairs, and character formulas, Funct. Anal. Appl., Volume 21 (1987), pp. 152-154 | DOI
Cited by Sources: