Jacobi–Trudi formulas and determinantal varieties
Algebraic Combinatorics, Volume 6 (2023) no. 5, pp. 1163-1175.

Gessel gave a determinantal expression for certain sums of Schur functions which visually looks like the classical Jacobi–Trudi formula. We explain the commonality of these formulas using a construction of Zelevinsky involving BGG complexes and use this explanation to generalize this formula in a few different directions.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.299
Classification: 05E05, 05E10
Keywords: symmetric functions, Jacobi-Trudi identity, BGG resolution

Sam, Steven V 1; Weyman, Jerzy 2

1 Department of Mathematics, University of California, San Diego, CA USA
2 Department of Mathematics, Jagiellonian University, Kraków, Poland
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2023__6_5_1163_0,
     author = {Sam, Steven V and Weyman, Jerzy},
     title = {Jacobi{\textendash}Trudi formulas and determinantal varieties},
     journal = {Algebraic Combinatorics},
     pages = {1163--1175},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {5},
     year = {2023},
     doi = {10.5802/alco.299},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.299/}
}
TY  - JOUR
AU  - Sam, Steven V
AU  - Weyman, Jerzy
TI  - Jacobi–Trudi formulas and determinantal varieties
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 1163
EP  - 1175
VL  - 6
IS  - 5
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.299/
DO  - 10.5802/alco.299
LA  - en
ID  - ALCO_2023__6_5_1163_0
ER  - 
%0 Journal Article
%A Sam, Steven V
%A Weyman, Jerzy
%T Jacobi–Trudi formulas and determinantal varieties
%J Algebraic Combinatorics
%D 2023
%P 1163-1175
%V 6
%N 5
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.299/
%R 10.5802/alco.299
%G en
%F ALCO_2023__6_5_1163_0
Sam, Steven V; Weyman, Jerzy. Jacobi–Trudi formulas and determinantal varieties. Algebraic Combinatorics, Volume 6 (2023) no. 5, pp. 1163-1175. doi : 10.5802/alco.299. https://alco.centre-mersenne.org/articles/10.5802/alco.299/

[1] Gessel, Ira M. Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A, Volume 53 (1990) no. 2, pp. 257-285 | DOI | MR | Zbl

[2] Goodman, Roe; Wallach, Nolan R. Symmetry, representations, and invariants, Graduate Texts in Mathematics, 255, Springer, Dordrecht, 2009, xx+716 pages | DOI

[3] Krattenthaler, C. Identities for classical group characters of nearly rectangular shape, J. Algebra, Volume 209 (1998) no. 1, pp. 1-64 | DOI | MR | Zbl

[4] Procesi, Claudio Lie groups: an approach through invariants and representations, Universitext, Springer, New York, 2007, xxiv+596 pages

[5] Sam, Steven V. Jacobi-Trudi determinants and characters of minimal affinizations, Pacific J. Math., Volume 272 (2014) no. 1, pp. 237-244 | MR

[6] Sam, Steven V.; Snowden, Andrew Infinite rank spinor and oscillator representations, J. Comb. Algebra, Volume 1 (2017) no. 2, pp. 145-183 | MR | Zbl

[7] Sam, Steven V.; Snowden, Andrew; Weyman, Jerzy Homology of Littlewood complexes, Selecta Math. (N.S.), Volume 19 (2013) no. 3, pp. 655-698 | MR | Zbl

[8] Stanley, Richard P. Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+581 pages | DOI

[9] Weyman, Jerzy Cohomology of vector bundles and syzygies, Cambridge Tracts in Mathematics, 149, Cambridge University Press, Cambridge, 2003, xiv+371 pages | DOI

[10] Zelevinskii, A. V. Resolvents, dual pairs, and character formulas, Funct. Anal. Appl., Volume 21 (1987), pp. 152-154 | DOI

Cited by Sources: