Supercharacter theories of type A unipotent radicals and unipotent polytopes
Algebraic Combinatorics, Volume 1 (2018) no. 1, pp. 23-45.

Even with the introduction of supercharacter theories, the representation theory of many unipotent groups remains mysterious. This paper constructs a family of supercharacter theories for normal pattern groups in a way that exhibit many of the combinatorial properties of the set partition combinatorics of the full uni-triangular groups, including combinatorial indexing sets, dimensions, and computable character formulas. Associated with these supercharacter theories is also a family of polytopes whose integer lattice points give the theories geometric underpinnings.

Received:
Accepted:
Published online:
DOI: 10.5802/alco.3
Classification: 05E10, 20C33
Keywords: supercharacters, integral polytopes, finite unipotent groups, unipotent radicals

Thiem, Nathaniel 1

1 University of Colorado Boulder Department of Mathematics Campus Box 395 Boulder, Colorado 80309 (USA)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2018__1_1_23_0,
     author = {Thiem, Nathaniel},
     title = {Supercharacter theories of type $A$ unipotent radicals and unipotent polytopes},
     journal = {Algebraic Combinatorics},
     pages = {23--45},
     publisher = {MathOA foundation},
     volume = {1},
     number = {1},
     year = {2018},
     doi = {10.5802/alco.3},
     mrnumber = {3857158},
     zbl = {06882333},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.3/}
}
TY  - JOUR
AU  - Thiem, Nathaniel
TI  - Supercharacter theories of type $A$ unipotent radicals and unipotent polytopes
JO  - Algebraic Combinatorics
PY  - 2018
SP  - 23
EP  - 45
VL  - 1
IS  - 1
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.3/
DO  - 10.5802/alco.3
LA  - en
ID  - ALCO_2018__1_1_23_0
ER  - 
%0 Journal Article
%A Thiem, Nathaniel
%T Supercharacter theories of type $A$ unipotent radicals and unipotent polytopes
%J Algebraic Combinatorics
%D 2018
%P 23-45
%V 1
%N 1
%I MathOA foundation
%U https://alco.centre-mersenne.org/articles/10.5802/alco.3/
%R 10.5802/alco.3
%G en
%F ALCO_2018__1_1_23_0
Thiem, Nathaniel. Supercharacter theories of type $A$ unipotent radicals and unipotent polytopes. Algebraic Combinatorics, Volume 1 (2018) no. 1, pp. 23-45. doi : 10.5802/alco.3. https://alco.centre-mersenne.org/articles/10.5802/alco.3/

[1] Aguiar, M.; André, C.; Benedetti, C.; Bergeron, N.; Chen, Z.; Diaconis, P.; Hendrickson, A.; Hsiao, S.; Isaacs, I.M.; Jedwab, A.; Johnson, K.; Karaali, G.; Lauve, A.; Le, T.; Lewis, S.; Li, H.; Magaard, K.; Marberg, E.; Novelli, J-C.; Pang, A.; Saliola, F.; Tevlin, L.; Thibon, J-Y.; Thiem, N.; Venkateswaran, V.; Vinroot, C.R.; Yan, N.; Zabrocki, M. Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras, Adv. Math., Volume 229 (2012), pp. 2310-2337 | DOI | MR | Zbl

[2] Aguiar, M.; Bergeron, N.; Thiem, N. Hopf monoids from class functions on unitriangular matrices, Algebra Number Theory, Volume 7 (2013), pp. 1743-1779 | DOI | MR | Zbl

[3] André, C. Basic characters of the unitriangular group, J. Algebra, Volume 175 (1995), pp. 287-319 | DOI | MR | Zbl

[4] André, C.; Freitas, P.; Neto, A. A supercharacter theory for involutive algebra groups, J. Algebra, Volume 430 (2015), pp. 159-190 | DOI | MR | Zbl

[5] Andrews, S. Supercharacters of unipotent groups defined by involutions, J. Algebra, Volume 425 (2015), pp. 1-30 | DOI | MR | Zbl

[6] Arias-Castro, E.; Diaconis, P.; Stanley, R. A super-class walk on upper-triangular matrices, J. Algebra, Volume 278 (2004), pp. 739-765 | DOI | MR | Zbl

[7] Bergeron, N.; Thiem, N. A supercharacter table decomposition via power-sum symmetric functions, Internat. J. Algebra Comput., Volume 23 (2013), pp. 763-778 | DOI | MR | Zbl

[8] Brumbaugh, J.; Bulkow, M.; Fleming, P.; German, L. Garcia; Garcia, S.; Karaali, G.; Matt, M. Supercharacters, exponential sums, and the uncertainty principle, J. Number Theory, Volume 144 (2014), pp. 151-175 | DOI | MR | Zbl

[9] Burkett, S.; Lamar, J.; Lewis, M.; Wynn, C. Groups with exactly two supercharacter theories, Comm. Algebra, Volume 45 (2017), pp. 977-982 | DOI | MR | Zbl

[10] Chern, B.; Diaconis, P.; Kane, D.M.; Rhoades, R.C. Closed expressions for averages of set partition statistics, Res. Math. Sci., Volume 1 (2014), Paper no. Art. 2, 32 pages | DOI | MR | Zbl

[11] De Loera, J.A.; Kim, E.D. Combinatorics and geometry of transportation polytopes: an update, Discrete geometry and algebraic combinatorics (Contemp. Math.), Volume 219, Amer. Math. Soc., Providence, RI, 2014, pp. 37-76 | MR | Zbl

[12] Diaconis, P.; Isaacs, I.M. Supercharacters and superclasses for algebra groups, Trans. Amer. Math. Soc., Volume 360 (2008), pp. 2359-2392 | DOI | MR | Zbl

[13] Dipper, R.; Guo, Q. Irreducible constituents of minimal degree in supercharacters of the finite unitriangular groups, J. Pure Appl. Algebra, Volume 219 (2015), pp. 2559-2580 | DOI | MR | Zbl

[14] Fowler, C.; Garcia, S.; Karaali, G. Ramanujan sums as supercharacters, Ramanujan J., Volume 35 (2014), pp. 205-241 | DOI | MR | Zbl

[15] Marberg, E. A supercharacter analogue for normality, J. Algebra, Volume 332 (2011), pp. 334-365 | DOI | MR | Zbl

[16] Marberg, E.; Thiem, N. Superinduction for pattern groups, J. Algebra, Volume 321 (2009), pp. 3681-3703 | DOI | MR | Zbl

[17] Yan, N. Representations of finite unipotent linear groups by the method of clusters (Preprint)

Cited by Sources: