The Grassmannian of 3-planes in 8 is schön
Algebraic Combinatorics, Volume 6 (2023) no. 5, pp. 1273-1299.

We prove that the open subvariety Gr 0 (3,8) of the Grassmannian Gr(3,8) determined by the nonvanishing of all Plücker coordinates is schön, i.e. all of its initial degenerations are smooth. Furthermore, we find an initial degeneration that has two connected components, and show that the remaining initial degenerations, up to symmetry, are irreducible. As an application, we prove that the Chow quotient of Gr(3,8) by the diagonal torus of PGL(8) is the log canonical compactification of the moduli space of 8 lines in 2 , resolving a conjecture of Hacking, Keel, and Tevelev. Along the way we develop various techniques to study finite inverse limits of schemes.

Received:
Accepted:
Published online:
DOI: 10.5802/alco.302
Classification: 14T90, 05E14, 14C05, 52B40
Keywords: Chow quotient, Grassmannian, matroid, tight span

Corey, Daniel 1; Luber, Dante 2

1 University of Nevada, Las Vegas 4505 S Maryland Pkwy Las Vegas, NV 89154
2 Technische Universität Berlin Institut für Mathematik, Sekr. MA 6-2 Strasse des 17 Juni 136 10623 Berlin
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2023__6_5_1273_0,
     author = {Corey, Daniel and Luber, Dante},
     title = {The {Grassmannian} of $3$-planes in $\mathbb{C}^{8}$ is sch\"on},
     journal = {Algebraic Combinatorics},
     pages = {1273--1299},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {5},
     year = {2023},
     doi = {10.5802/alco.302},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.302/}
}
TY  - JOUR
AU  - Corey, Daniel
AU  - Luber, Dante
TI  - The Grassmannian of $3$-planes in $\mathbb{C}^{8}$ is schön
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 1273
EP  - 1299
VL  - 6
IS  - 5
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.302/
DO  - 10.5802/alco.302
LA  - en
ID  - ALCO_2023__6_5_1273_0
ER  - 
%0 Journal Article
%A Corey, Daniel
%A Luber, Dante
%T The Grassmannian of $3$-planes in $\mathbb{C}^{8}$ is schön
%J Algebraic Combinatorics
%D 2023
%P 1273-1299
%V 6
%N 5
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.302/
%R 10.5802/alco.302
%G en
%F ALCO_2023__6_5_1273_0
Corey, Daniel; Luber, Dante. The Grassmannian of $3$-planes in $\mathbb{C}^{8}$ is schön. Algebraic Combinatorics, Volume 6 (2023) no. 5, pp. 1273-1299. doi : 10.5802/alco.302. https://alco.centre-mersenne.org/articles/10.5802/alco.302/

[1] Awodey, Steve Category theory, Oxford Logic Guides, 52, Oxford University Press, Oxford, 2010, xvi+311 pages

[2] Bendle, Dominik; Böhm, Janko; Ren, Yue; Schröter, Benjamin Massively parallel computation of tropical varieties, their positive part, and tropical Grassmannians, J. Symbolic Comput., Volume 120 (2024), Paper no. 102224, 28 pages | MR | Zbl

[3] Bezanson, Jeff; Edelman, Alan; Karpinski, Stefan; Shah, Viral B. Julia: a fresh approach to numerical computing, SIAM Rev., Volume 59 (2017) no. 1, pp. 65-98 | DOI | MR | Zbl

[4] Bokowski, Jürgen; Sturmfels, Bernd Computational synthetic geometry, Lecture Notes in Mathematics, 1355, Springer-Verlag, Berlin, 1989, vi+168 pages | DOI

[5] Brenner, Holger; Schröer, Stefan Ample families, multihomogeneous spectra, and algebraization of formal schemes, Pacific J. Math., Volume 208 (2003) no. 2, pp. 209-230 | DOI | MR | Zbl

[6] Corey, Daniel Initial degenerations of Grassmannians, Sel. Math. New Ser., Volume 27 (2021), Paper no. 57, 40 pages (with an appendix by María Angélica Cueto) | MR | Zbl

[7] Corey, Daniel Initial degenerations of spinor varieties, 2022 | arXiv

[8] Corey, Daniel; Luber, Dante Singular matroid realization spaces, 2023 | arXiv

[9] De Loera, Jesús A.; Rambau, Jörg; Santos, Francisco Triangulations. Structures for Algorithms and Applications, Algorithms and Computation in Mathematics, 25, Springer-Verlag, Berlin, 2010, xiv+535 pages

[10] The OSCAR book (Eder, Christian; Decker, Wolfram; Fieker, Claus; Horn, Max; Joswig, Michael, eds.), 2024

[11] Gawrilow, Ewgenij; Joswig, Michael polymake: a framework for analyzing convex polytopes, Polytopes—combinatorics and computation (Oberwolfach, 1997) (DMV Sem.), Volume 29, Birkhäuser, Basel, 2000, pp. 43-73 | DOI | MR | Zbl

[12] Gelfand, I.; Goresky, M.; MacPherson, R.; Serganova, V. Combinatorial geometries, convex polyhedra, and Schubert cells, Adv. in Math., Volume 63 (1987) no. 3, pp. 301-316 | DOI | MR | Zbl

[13] Gelfand, I. M.; MacPherson, R. D. Geometry in Grassmannians and a generalization of the dilogarithm, Adv. in Math., Volume 44 (1982) no. 3, pp. 279-312 | DOI | MR | Zbl

[14] Gelfand, I. M.; Serganova, V. V. Combinatorial geometries and the strata of a torus on homogeneous compact manifolds, Uspekhi Mat. Nauk, Volume 42 (1987) no. 2(254), p. 107-134, 287 | MR

[15] Gropp, Harald Configurations and their realization, Discrete Math., Volume 174 (1997) no. 1-3, pp. 137-151 Combinatorics (Rome and Montesilvano, 1994) | DOI | MR | Zbl

[16] Grünbaum, Branko Configurations of Points and Lines, Graduate Studies in Mathematics, 103, American Mathematical Society, Providence, RI, 2009, 399 pages

[17] Hacking, Paul; Keel, Sean; Tevelev, Jenia Stable pair, tropical, and log canonical compactifications of moduli spaces of del Pezzo surfaces, Invent. Math., Volume 178 (2009) no. 1, pp. 173-227 | DOI | MR | Zbl

[18] Hartshorne, Robin Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977, xvi+496 pages | DOI

[19] Helm, David; Katz, Eric Monodromy filtrations and the topology of tropical varieties, Canad. J. Math., Volume 64 (2012) no. 4, pp. 845-868 | DOI | MR | Zbl

[20] Herrmann, Sven On the facets of the secondary polytope, J. Combin. Theory Ser. A, Volume 118 (2011) no. 2, pp. 425-447 | DOI | MR | Zbl

[21] Herrmann, Sven; Jensen, Anders; Joswig, Michael; Sturmfels, Bernd How to Draw Tropical Planes, Electron. J. Combin., Volume 16 (2009) no. 2, Paper no. R6, 26 pages | MR | Zbl

[22] Herrmann, Sven; Joswig, Michael Splitting polytopes, Münster J. Math., Volume 1 (2008), pp. 109-141 | MR | Zbl

[23] Kaluba, Marek; Lorenz, Benjamin; Timme, Sascha Polymake.jl: A New Interface to polymake, Mathematical Software – ICMS 2020 (Bigatti, Anna Maria; Carette, Jacques; Davenport, James H.; Joswig, Michael; de Wolff, Timo, eds.), Springer International Publishing, Cham (2020), pp. 377-385 | DOI | Zbl

[24] Kapranov, M. M.; Sturmfels, B.; Zelevinsky, A. V. Quotients of toric varieties, Math. Ann., Volume 290 (1991) no. 4, pp. 643-655 | DOI | MR | Zbl

[25] Kapranov, Mikhail Chow quotients of Grassmannians. I, I. M. Gelfand Seminar (Adv. Soviet Math.), Volume 16, Amer. Math. Soc., Providence, RI, 1993, pp. 29-110 | DOI | MR | Zbl

[26] Katz, Eric; Payne, Sam Realization spaces for tropical fans, Combinatorial aspects of commutative algebra and algebraic geometry (Abel Symp.), Volume 6, Springer, Berlin, 2011, pp. 73-88 | DOI | MR | Zbl

[27] Keel, Seán; McKernan, James Contractible extremal rays on M ¯ 0,n , Handbook of moduli. Vol. II (Adv. Lect. Math. (ALM)), Volume 25, Int. Press, Somerville, MA, 2013, pp. 115-130 | MR | Zbl

[28] Keel, Sean; Tevelev, Jenia Geometry of Chow quotients of Grassmannians, Duke Math. J., Volume 134 (2006) no. 2, pp. 259-311 | MR | Zbl

[29] Knutson, Allen; Lam, Thomas; Speyer, David E. Positroid varieties: juggling and geometry, Compos. Math., Volume 149 (2013) no. 10, pp. 1710-1752 | DOI | MR | Zbl

[30] Lafforgue, L. Chirurgie des grassmanniennes, CRM Monograph Series, 19, American Mathematical Society, Providence, RI, 2003, xx+170 pages | DOI | MR

[31] Lee, Seok Hyeong; Vakil, Ravi Mnëv-Sturmfels universality for schemes, A celebration of algebraic geometry (Clay Math. Proc.), Volume 18, Amer. Math. Soc., Providence, RI, 2013, pp. 457-468 | Zbl

[32] Luxton, Mark The log canonical compactification of the moduli space of six lines in 2 , Ph. D. Thesis, The University of Texas at Austin (2008)

[33] Luxton, Mark; Qu, Zhenhua Some results on tropical compactifications, Trans. Amer. Math. Soc., Volume 363 (2011) no. 9, pp. 4853-4876 | DOI | MR | Zbl

[34] Maclagan, Diane; Sturmfels, Bernd Introduction to Tropical Geometry, Graduate Studies in Mathematics, 161, American Mathematical Society, Providence, RI, 2015, vii+359 pages | DOI

[35] Matsumoto, Yoshitake; Moriyama, Sonoko; Imai, Hiroshi; Bremner, David Matroid enumeration for incidence geometry, Discrete Comput. Geom., Volume 47 (2012) no. 1, pp. 17-43 | DOI | MR | Zbl

[36] Nazir, Shaheen; Yoshinaga, Masahiko On the connectivity of the realization spaces of line arrangements, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Volume 11 (2012) no. 4, pp. 921-937 | Numdam | MR | Zbl

[37] Olarte, Jorge Alberto; Panizzut, Marta; Schröter, Benjamin On local Dressians of matroids, Algebraic and geometric combinatorics on lattice polytopes, World Sci. Publ., Hackensack, NJ, 2019, pp. 309-329 | DOI | Zbl

[38] OSCAR – Open Source Computer Algebra Research system, Version 0.10.1, 2022 https://oscar.computeralgebra.de

[39] Oxley, James Matroid theory, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1992, xii+532 pages

[40] Payne, Sam Fibers of tropicalization, Math. Z., Volume 262 (2009) no. 2, pp. 301-311 | DOI | MR | Zbl

[41] Schock, Nolan Quasilinear tropical compactifications, 2021 | arXiv

[42] Speyer, David Tropical linear spaces, SIAM J. Discrete Math., Volume 22 (2008) no. 4, pp. 1527-1558 | DOI | MR | Zbl

[43] Speyer, David; Sturmfels, Bernd The tropical Grassmannian, Adv. Geom., Volume 4 (2004) no. 3, pp. 389-411 | DOI | MR | Zbl

[44] Stacks project authors, The The Stacks project, https://stacks.math.columbia.edu, 2022

[45] Tevelev, Jenia Compactifications of subvarieties of tori, Amer. J. Math., Volume 129 (2007) no. 4, pp. 1087-1104 | DOI | MR | Zbl

[46] Vakil, Ravi Murphy’s law in algebraic geometry: badly-behaved deformation spaces, Invent. Math., Volume 164 (2006) no. 3, pp. 569-590 | DOI | MR | Zbl

[47] Varčenko, A. N. Newton polyhedra and estimates of oscillatory integrals, Funkcional. Anal. i Priložen., Volume 10 (1976) no. 3, pp. 13-38 | MR

[48] Varčenko, A. N. Zeta-function of monodromy and Newton’s diagram, Invent. Math., Volume 37 (1976) no. 3, pp. 253-262 | DOI | MR | Zbl

Cited by Sources: