We prove that the open subvariety of the Grassmannian determined by the nonvanishing of all Plücker coordinates is schön, i.e. all of its initial degenerations are smooth. Furthermore, we find an initial degeneration that has two connected components, and show that the remaining initial degenerations, up to symmetry, are irreducible. As an application, we prove that the Chow quotient of by the diagonal torus of is the log canonical compactification of the moduli space of lines in , resolving a conjecture of Hacking, Keel, and Tevelev. Along the way we develop various techniques to study finite inverse limits of schemes.
Accepted:
Published online:
Keywords: Chow quotient, Grassmannian, matroid, tight span
Corey, Daniel 1; Luber, Dante 2
@article{ALCO_2023__6_5_1273_0, author = {Corey, Daniel and Luber, Dante}, title = {The {Grassmannian} of $3$-planes in $\mathbb{C}^{8}$ is sch\"on}, journal = {Algebraic Combinatorics}, pages = {1273--1299}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {5}, year = {2023}, doi = {10.5802/alco.302}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.302/} }
TY - JOUR AU - Corey, Daniel AU - Luber, Dante TI - The Grassmannian of $3$-planes in $\mathbb{C}^{8}$ is schön JO - Algebraic Combinatorics PY - 2023 SP - 1273 EP - 1299 VL - 6 IS - 5 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.302/ DO - 10.5802/alco.302 LA - en ID - ALCO_2023__6_5_1273_0 ER -
%0 Journal Article %A Corey, Daniel %A Luber, Dante %T The Grassmannian of $3$-planes in $\mathbb{C}^{8}$ is schön %J Algebraic Combinatorics %D 2023 %P 1273-1299 %V 6 %N 5 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.302/ %R 10.5802/alco.302 %G en %F ALCO_2023__6_5_1273_0
Corey, Daniel; Luber, Dante. The Grassmannian of $3$-planes in $\mathbb{C}^{8}$ is schön. Algebraic Combinatorics, Volume 6 (2023) no. 5, pp. 1273-1299. doi : 10.5802/alco.302. https://alco.centre-mersenne.org/articles/10.5802/alco.302/
[1] Category theory, Oxford Logic Guides, 52, Oxford University Press, Oxford, 2010, xvi+311 pages
[2] Massively parallel computation of tropical varieties, their positive part, and tropical Grassmannians, J. Symbolic Comput., Volume 120 (2024), Paper no. 102224, 28 pages | MR | Zbl
[3] Julia: a fresh approach to numerical computing, SIAM Rev., Volume 59 (2017) no. 1, pp. 65-98 | DOI | MR | Zbl
[4] Computational synthetic geometry, Lecture Notes in Mathematics, 1355, Springer-Verlag, Berlin, 1989, vi+168 pages | DOI
[5] Ample families, multihomogeneous spectra, and algebraization of formal schemes, Pacific J. Math., Volume 208 (2003) no. 2, pp. 209-230 | DOI | MR | Zbl
[6] Initial degenerations of Grassmannians, Sel. Math. New Ser., Volume 27 (2021), Paper no. 57, 40 pages (with an appendix by María Angélica Cueto) | MR | Zbl
[7] Initial degenerations of spinor varieties, 2022 | arXiv
[8] Singular matroid realization spaces, 2023 | arXiv
[9] Triangulations. Structures for Algorithms and Applications, Algorithms and Computation in Mathematics, 25, Springer-Verlag, Berlin, 2010, xiv+535 pages
[10] The OSCAR book (Eder, Christian; Decker, Wolfram; Fieker, Claus; Horn, Max; Joswig, Michael, eds.), 2024
[11] polymake: a framework for analyzing convex polytopes, Polytopes—combinatorics and computation (Oberwolfach, 1997) (DMV Sem.), Volume 29, Birkhäuser, Basel, 2000, pp. 43-73 | DOI | MR | Zbl
[12] Combinatorial geometries, convex polyhedra, and Schubert cells, Adv. in Math., Volume 63 (1987) no. 3, pp. 301-316 | DOI | MR | Zbl
[13] Geometry in Grassmannians and a generalization of the dilogarithm, Adv. in Math., Volume 44 (1982) no. 3, pp. 279-312 | DOI | MR | Zbl
[14] Combinatorial geometries and the strata of a torus on homogeneous compact manifolds, Uspekhi Mat. Nauk, Volume 42 (1987) no. 2(254), p. 107-134, 287 | MR
[15] Configurations and their realization, Discrete Math., Volume 174 (1997) no. 1-3, pp. 137-151 Combinatorics (Rome and Montesilvano, 1994) | DOI | MR | Zbl
[16] Configurations of Points and Lines, Graduate Studies in Mathematics, 103, American Mathematical Society, Providence, RI, 2009, 399 pages
[17] Stable pair, tropical, and log canonical compactifications of moduli spaces of del Pezzo surfaces, Invent. Math., Volume 178 (2009) no. 1, pp. 173-227 | DOI | MR | Zbl
[18] Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977, xvi+496 pages | DOI
[19] Monodromy filtrations and the topology of tropical varieties, Canad. J. Math., Volume 64 (2012) no. 4, pp. 845-868 | DOI | MR | Zbl
[20] On the facets of the secondary polytope, J. Combin. Theory Ser. A, Volume 118 (2011) no. 2, pp. 425-447 | DOI | MR | Zbl
[21] How to Draw Tropical Planes, Electron. J. Combin., Volume 16 (2009) no. 2, Paper no. R6, 26 pages | MR | Zbl
[22] Splitting polytopes, Münster J. Math., Volume 1 (2008), pp. 109-141 | MR | Zbl
[23] Polymake.jl: A New Interface to polymake, Mathematical Software – ICMS 2020 (Bigatti, Anna Maria; Carette, Jacques; Davenport, James H.; Joswig, Michael; de Wolff, Timo, eds.), Springer International Publishing, Cham (2020), pp. 377-385 | DOI | Zbl
[24] Quotients of toric varieties, Math. Ann., Volume 290 (1991) no. 4, pp. 643-655 | DOI | MR | Zbl
[25] Chow quotients of Grassmannians. I, I. M. Gelfand Seminar (Adv. Soviet Math.), Volume 16, Amer. Math. Soc., Providence, RI, 1993, pp. 29-110 | DOI | MR | Zbl
[26] Realization spaces for tropical fans, Combinatorial aspects of commutative algebra and algebraic geometry (Abel Symp.), Volume 6, Springer, Berlin, 2011, pp. 73-88 | DOI | MR | Zbl
[27] Contractible extremal rays on , Handbook of moduli. Vol. II (Adv. Lect. Math. (ALM)), Volume 25, Int. Press, Somerville, MA, 2013, pp. 115-130 | MR | Zbl
[28] Geometry of Chow quotients of Grassmannians, Duke Math. J., Volume 134 (2006) no. 2, pp. 259-311 | MR | Zbl
[29] Positroid varieties: juggling and geometry, Compos. Math., Volume 149 (2013) no. 10, pp. 1710-1752 | DOI | MR | Zbl
[30] Chirurgie des grassmanniennes, CRM Monograph Series, 19, American Mathematical Society, Providence, RI, 2003, xx+170 pages | DOI | MR
[31] Mnëv-Sturmfels universality for schemes, A celebration of algebraic geometry (Clay Math. Proc.), Volume 18, Amer. Math. Soc., Providence, RI, 2013, pp. 457-468 | Zbl
[32] The log canonical compactification of the moduli space of six lines in , Ph. D. Thesis, The University of Texas at Austin (2008)
[33] Some results on tropical compactifications, Trans. Amer. Math. Soc., Volume 363 (2011) no. 9, pp. 4853-4876 | DOI | MR | Zbl
[34] Introduction to Tropical Geometry, Graduate Studies in Mathematics, 161, American Mathematical Society, Providence, RI, 2015, vii+359 pages | DOI
[35] Matroid enumeration for incidence geometry, Discrete Comput. Geom., Volume 47 (2012) no. 1, pp. 17-43 | DOI | MR | Zbl
[36] On the connectivity of the realization spaces of line arrangements, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Volume 11 (2012) no. 4, pp. 921-937 | Numdam | MR | Zbl
[37] On local Dressians of matroids, Algebraic and geometric combinatorics on lattice polytopes, World Sci. Publ., Hackensack, NJ, 2019, pp. 309-329 | DOI | Zbl
[38] OSCAR – Open Source Computer Algebra Research system, Version 0.10.1, 2022 https://oscar.computeralgebra.de
[39] Matroid theory, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1992, xii+532 pages
[40] Fibers of tropicalization, Math. Z., Volume 262 (2009) no. 2, pp. 301-311 | DOI | MR | Zbl
[41] Quasilinear tropical compactifications, 2021 | arXiv
[42] Tropical linear spaces, SIAM J. Discrete Math., Volume 22 (2008) no. 4, pp. 1527-1558 | DOI | MR | Zbl
[43] The tropical Grassmannian, Adv. Geom., Volume 4 (2004) no. 3, pp. 389-411 | DOI | MR | Zbl
[44] The Stacks project, https://stacks.math.columbia.edu, 2022
[45] Compactifications of subvarieties of tori, Amer. J. Math., Volume 129 (2007) no. 4, pp. 1087-1104 | DOI | MR | Zbl
[46] Murphy’s law in algebraic geometry: badly-behaved deformation spaces, Invent. Math., Volume 164 (2006) no. 3, pp. 569-590 | DOI | MR | Zbl
[47] Newton polyhedra and estimates of oscillatory integrals, Funkcional. Anal. i Priložen., Volume 10 (1976) no. 3, pp. 13-38 | MR
[48] Zeta-function of monodromy and Newton’s diagram, Invent. Math., Volume 37 (1976) no. 3, pp. 253-262 | DOI | MR | Zbl
Cited by Sources: