A graph
We find all of the nontrivially unstable circulant graphs of valency at most
Revised:
Accepted:
Published online:
Keywords: circulant, double cover, automorphism group
Hujdurović, Ademir 1; Mitrović, Đorđe 2; Witte Morris, Dave 3

@article{ALCO_2023__6_5_1235_0, author = {Hujdurovi\'c, Ademir and Mitrovi\'c, {\DJ}or{\dj}e and Witte Morris, Dave}, title = {Automorphisms of the double cover of a circulant graph of valency at most 7}, journal = {Algebraic Combinatorics}, pages = {1235--1271}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {5}, year = {2023}, doi = {10.5802/alco.303}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.303/} }
TY - JOUR AU - Hujdurović, Ademir AU - Mitrović, Đorđe AU - Witte Morris, Dave TI - Automorphisms of the double cover of a circulant graph of valency at most 7 JO - Algebraic Combinatorics PY - 2023 SP - 1235 EP - 1271 VL - 6 IS - 5 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.303/ DO - 10.5802/alco.303 LA - en ID - ALCO_2023__6_5_1235_0 ER -
%0 Journal Article %A Hujdurović, Ademir %A Mitrović, Đorđe %A Witte Morris, Dave %T Automorphisms of the double cover of a circulant graph of valency at most 7 %J Algebraic Combinatorics %D 2023 %P 1235-1271 %V 6 %N 5 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.303/ %R 10.5802/alco.303 %G en %F ALCO_2023__6_5_1235_0
Hujdurović, Ademir; Mitrović, Đorđe; Witte Morris, Dave. Automorphisms of the double cover of a circulant graph of valency at most 7. Algebraic Combinatorics, Volume 6 (2023) no. 5, pp. 1235-1271. doi : 10.5802/alco.303. https://alco.centre-mersenne.org/articles/10.5802/alco.303/
[1] On the normality of Cayley graphs of abelian groups, Algebra Colloq., Volume 5 (1998) no. 3, pp. 297-304 | MR | Zbl
[2] Permutation groups, Graduate Texts in Mathematics, 163, Springer-Verlag, New York, 1996, xii+346 pages | DOI | MR
[3] Canonical double covers of circulants, J. Combin. Theory Ser. B, Volume 154 (2022), pp. 49-59 | DOI | MR | Zbl
[4] Hamiltonicity of cubic Cayley graphs, J. Eur. Math. Soc. (JEMS), Volume 9 (2007) no. 4, pp. 775-787 | DOI | MR | Zbl
[5] Handbook of product graphs, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2011, xviii+518 pages (With a foreword by Peter Winkler) | DOI | MR
[6] On colour-preserving automorphisms of Cayley graphs, Ars Math. Contemp., Volume 11 (2016) no. 1, pp. 189-213 | DOI | MR | Zbl
[7] On automorphisms of the double cover of a circulant graph, Electron. J. Combin., Volume 28 (2021) no. 4, Paper no. 4.43, 25 pages | DOI | MR | Zbl
[8] The rank and size of graphs, J. Graph Theory, Volume 23 (1996) no. 2, pp. 185-189 | DOI | MR | Zbl
[9] Classifying arc-transitive circulants, J. Algebraic Combin., Volume 20 (2004) no. 3, pp. 353-358 | DOI | MR | Zbl
[10] On isomorphisms of finite Cayley graphs—a survey, Discrete Math., Volume 256 (2002) no. 1-2, pp. 301-334 | DOI | MR | Zbl
[11] Permutation groups with a cyclic regular subgroup and arc transitive circulants, J. Algebraic Combin., Volume 21 (2005) no. 2, pp. 131-136 | DOI | MR | Zbl
[12] A characterization of particular symmetric
[13] On automorphisms of direct products of Cayley graphs on abelian groups, Electron. J. Combin., Volume 28 (2021) no. 3, Paper no. 3.5, 10 pages | DOI | MR | Zbl
[14] Stability of circulant graphs, J. Combin. Theory Ser. B, Volume 136 (2019), pp. 154-169 | DOI | MR | Zbl
[15] Bipartite double cover https://wikipedia.org/wiki/Bipartite_double_cover
[16] Unexpected symmetries in unstable graphs, J. Combin. Theory Ser. B, Volume 98 (2008) no. 2, pp. 359-383 | DOI | MR | Zbl
[17] Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math., Volume 182 (1998) no. 1-3, pp. 309-319 Graph theory (Lake Bled, 1995) | DOI | MR | Zbl
Cited by Sources: