We provide an observation relating several known and conjectured -series identities to the theory of principal subspaces of basic modules for twisted affine Lie algebras. We also state and prove two new families of -series identities. The first family provides quadruple sum representations for Nandi’s identities, including a manifestly positive representation for the first identity. The second is a family of new mod 10 identities connected with principal characters of integrable, level 4, highest-weight modules of .
Supplementary Materials:
Supplementary materials for this article are supplied as separate files:
Revised:
Accepted:
Published online:
Keywords: Principal subspaces, vertex operator algebras, affine Lie algebras, Nandi’s identities
Baker, Katherine 1; Kanade, Shashank 2; Russell, Matthew C. 3; Sadowski, Christopher 1
@article{ALCO_2023__6_6_1533_0, author = {Baker, Katherine and Kanade, Shashank and Russell, Matthew C. and Sadowski, Christopher}, title = {Principal subspaces of basic modules for twisted affine {Lie} algebras, $q$-series multisums, and {Nandi{\textquoteright}s} identities}, journal = {Algebraic Combinatorics}, pages = {1533--1556}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {6}, year = {2023}, doi = {10.5802/alco.311}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.311/} }
TY - JOUR AU - Baker, Katherine AU - Kanade, Shashank AU - Russell, Matthew C. AU - Sadowski, Christopher TI - Principal subspaces of basic modules for twisted affine Lie algebras, $q$-series multisums, and Nandi’s identities JO - Algebraic Combinatorics PY - 2023 SP - 1533 EP - 1556 VL - 6 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.311/ DO - 10.5802/alco.311 LA - en ID - ALCO_2023__6_6_1533_0 ER -
%0 Journal Article %A Baker, Katherine %A Kanade, Shashank %A Russell, Matthew C. %A Sadowski, Christopher %T Principal subspaces of basic modules for twisted affine Lie algebras, $q$-series multisums, and Nandi’s identities %J Algebraic Combinatorics %D 2023 %P 1533-1556 %V 6 %N 6 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.311/ %R 10.5802/alco.311 %G en %F ALCO_2023__6_6_1533_0
Baker, Katherine; Kanade, Shashank; Russell, Matthew C.; Sadowski, Christopher. Principal subspaces of basic modules for twisted affine Lie algebras, $q$-series multisums, and Nandi’s identities. Algebraic Combinatorics, Volume 6 (2023) no. 6, pp. 1533-1556. doi : 10.5802/alco.311. https://alco.centre-mersenne.org/articles/10.5802/alco.311/
[1] An analytic generalization of the Rogers–Ramanujan identities for odd moduli, Proc. Nat. Acad. Sci. U.S.A., Volume 71 (1974), pp. 4082-4085 | DOI | MR | Zbl
[2] Multiple series Rogers–Ramanujan type identities, Pacific J. Math., Volume 114 (1984) no. 2, pp. 267-283 | DOI | MR | Zbl
[3] The theory of partitions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998, xvi+255 pages (Reprint of the 1976 original) | MR
[4] An Bailey lemma and Rogers–Ramanujan-type identities, J. Amer. Math. Soc., Volume 12 (1999) no. 3, pp. 677-702 | DOI | MR | Zbl
[5] Coding the principal character formula for affine Kac–Moody Lie algebras, Math. Comp., Volume 72 (2003) no. 244, pp. 2001-2012 | DOI | MR | Zbl
[6] Change of base in Bailey pairs, Ramanujan J., Volume 4 (2000) no. 4, pp. 435-453 | DOI | MR | Zbl
[7] Analytic and combinatorial generalizations of the Rogers–Ramanujan identities, Mem. Amer. Math. Soc., Volume 24 (1980) no. 227, p. 54 | DOI | MR | Zbl
[8] Proofs and reductions of various conjectured partition identities of Kanade and Russell, J. Reine Angew. Math., Volume 766 (2020), pp. 109-135 | DOI | MR | Zbl
[9] Vertex-algebraic structure of the principal subspaces of certain -modules. I. Level one case, Internat. J. Math., Volume 19 (2008) no. 1, pp. 71-92 | DOI | MR | Zbl
[10] Vertex-algebraic structure of the principal subspaces of certain -modules. II. Higher-level case, J. Pure Appl. Algebra, Volume 212 (2008) no. 8, pp. 1928-1950 | DOI | MR | Zbl
[11] Vertex-algebraic structure of the principal subspaces of level one modules for the untwisted affine Lie algebras of types , J. Algebra, Volume 323 (2010) no. 1, pp. 167-192 | DOI | MR | Zbl
[12] Vertex-algebraic structure of principal subspaces of standard -modules, I, Internat. J. Math., Volume 25 (2014) no. 7, Paper no. 1450063, 44 pages | DOI | MR | Zbl
[13] Vertex algebraic structure of principal subspaces of basic -modules, J. Pure Appl. Algebra, Volume 220 (2016) no. 5, pp. 1752-1784 | DOI | MR | Zbl
[14] Presentations of principal subspaces of higher level standard -modules, Algebr. Represent. Theory, Volume 22 (2019) no. 6, pp. 1457-1478 | DOI | MR | Zbl
[15] The Rogers–Ramanujan recursion and intertwining operators, Commun. Contemp. Math., Volume 5 (2003) no. 6, pp. 947-966 | DOI | MR | Zbl
[16] The Rogers–Selberg recursions, the Gordon–Andrews identities and intertwining operators, Ramanujan J., Volume 12 (2006) no. 3, pp. 379-397 | DOI | MR | Zbl
[17] On some representations of twisted affine Lie algebras and combinatorial identities, J. Algebra, Volume 154 (1993) no. 2, pp. 335-355 | DOI | MR | Zbl
[18] Lie algebras of finite and affine type, Cambridge Studies in Advanced Mathematics, 96, Cambridge University Press, Cambridge, 2005, xviii+632 pages | DOI | MR
[19] Linked partition ideals, directed graphs and -multi-summations, Electron. J. Combin., Volume 27 (2020) no. 3, Paper no. 3.33, 29 pages | DOI | MR | Zbl
[20] Cylindric partitions and some new Rogers–Ramanujan identities, Proc. Amer. Math. Soc., Volume 150 (2022) no. 2, pp. 481-497 | DOI | MR | Zbl
[21] Quasi-particles models for the representations of Lie algebras and geometry of flag manifold, 1993 | arXiv
[22] A -product tutorial for a -series MAPLE package, Sém. Lothar. Combin., Volume 42 (1999), Paper no. B42d, 27 pages The Andrews Festschrift (Maratea, 1998) | MR | Zbl
[23] A framework of Rogers–Ramanujan identities and their arithmetic properties, Duke Math. J., Volume 165 (2016) no. 8, pp. 1475-1527 | DOI | MR | Zbl
[24] IdentityFinder and some new identities of Rogers–Ramanujan type, Exp. Math., Volume 24 (2015) no. 4, pp. 419-423 | DOI | MR | Zbl
[25] Staircases to analytic sum-sides for many new integer partition identities of Rogers–Ramanujan type, Electron. J. Combin., Volume 26 (2019) no. 1, Paper no. 1.6, 33 pages | DOI | MR | Zbl
[26] On -series for principal characters of standard -modules, Adv. Math., Volume 400 (2022), Paper no. 108282, 24 pages | DOI | MR | Zbl
[27] Completing the A2 Andrews–Schilling–Warnaar Identities, Int. Math. Res. Not. IMRN (2023) no. 20, pp. 17100-17155 | DOI
[28] Further -reflections on the modulo 9 Kanade–Russell (conjectural) identities, 2022 | arXiv
[29] Andrews–Gordon type series for Capparelli’s and Göllnitz–Gordon identities, J. Combin. Theory Ser. A, Volume 165 (2019), pp. 117-138 | DOI | MR | Zbl
[30] Andrews–Gordon type series for Kanade–Russell conjectures, Ann. Comb., Volume 23 (2019) no. 3-4, pp. 835-888 | DOI | MR | Zbl
[31] Calculus of twisted vertex operators, Proc. Nat. Acad. Sci. U.S.A., Volume 82 (1985) no. 24, pp. 8295-8299 | DOI | MR | Zbl
[32] Introduction to vertex operator algebras and their representations, Progress in Mathematics, 227, Birkhäuser Boston, Inc., Boston, MA, 2004, xiv+318 pages | DOI | MR
[33] Partition identities arising from the standard A2 (2)-modules of level 4, ProQuest LLC, Ann Arbor, MI, 2014, 203 pages Thesis (Ph.D.)–Rutgers The State University of New Jersey - New Brunswick | MR
[34] On identities of the Rogers–Ramanujan type, J. Math. Anal. Appl., Volume 107 (1985) no. 1, pp. 255-284 | DOI | MR | Zbl
[35] Vertex-algebraic structure of principal subspaces of basic -modules, Ramanujan J., Volume 43 (2017) no. 3, pp. 571-617 | DOI | MR | Zbl
[36] Vertex-algebraic structure of principal subspaces of the basic modules for twisted affine Lie algebras of type , , , J. Algebra, Volume 496 (2018), pp. 242-291 | DOI | MR | Zbl
[37] Principal subspaces of twisted modules for certain lattice vertex operator algebras, Internat. J. Math., Volume 30 (2019) no. 10, Paper no. 1950048, 47 pages | DOI | MR | Zbl
[38] Proofs of some partition identities conjectured by Kanade and Russell, Ramanujan J., Volume 61 (2023) no. 1, pp. 295-317 | DOI | MR | Zbl
[39] Using experimental mathematics to conjecture and prove theorems in the theory of partitions and commutative and non-commutative recurrences, ProQuest LLC, Ann Arbor, MI, 2016, 74 pages Thesis (Ph.D.)–Rutgers The State University of New Jersey - New Brunswick | MR
[40] An invitation to the Rogers–Ramanujan identities, CRC Press, Boca Raton, FL, 2018, xx+233 pages (With a foreword by George E. Andrews) | MR
[41] Hall–Littlewood functions, plane partitions, and the Rogers–Ramanujan identities, Trans. Amer. Math. Soc., Volume 319 (1990) no. 2, pp. 469-498 | DOI | MR | Zbl
[42] Functional models of the representations of current algebras, and semi-infinite Schubert cells, Funktsional. Anal. i Prilozhen., Volume 28 (1994) no. 1, p. 68-90, 96 | DOI | MR
[43] Vertex algebraic construction of modules for twisted affine Lie algebras of type , J. Pure Appl. Algebra, Volume 227 (2023) no. 4, Paper no. 107263, 33 pages | MR | Zbl
[44] A proof of conjectured partition identities of Nandi, 2020 (Forthcoming, Amer. J. Math) | arXiv
[45] Andrews–Gordon type series for the level 5 and 7 standard modules of the affine Lie algebra , Proc. Amer. Math. Soc., Volume 149 (2021) no. 7, pp. 2763-2776 | DOI | MR | Zbl
[46] An example of Rogers–Ramanujan bipartition identities of level 3, 2022 | arXiv
[47] A vertex operator reformulation of the Kanade–Russell conjecture modulo 9, 2022 | arXiv
[48] Reflecting (on) the modulo 9 Kanade–Russell (conjectural) identities, Sém. Lothar. Combin., Volume 85 ([2020–2021]), Paper no. B85e, 17 pages | MR | Zbl
[49] The generalized Borwein conjecture. II. Refined -trinomial coefficients, Discrete Math., Volume 272 (2003) no. 2-3, pp. 215-258 | DOI | MR | Zbl
[50] The Andrews-Gordon identities and cylindric partitions, Trans. Amer. Math. Soc. Ser. B, Volume 10 (2023), pp. 715-765 | DOI | MR | Zbl
Cited by Sources: