We establish an isomorphism between the center of the Heisenberg category defined by Khovanov in [13] and the algebra of shifted symmetric functions defined by Okounkov–Olshanski in [18]. We give a graphical description of the shifted power and Schur bases of as elements of , and describe the curl generators of in the language of shifted symmetric functions. This latter description makes use of the transition and co-transition measures of Kerov [10] and the noncommutative probability spaces of Biane [2]
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.32
Keywords: Symmetric functions, asymptotic representation theory, Heisenberg categorification, graphical calculus
Kvinge, Henry 1; Licata, Anthony M. 2; Mitchell, Stuart 2
@article{ALCO_2019__2_1_49_0, author = {Kvinge, Henry and Licata, Anthony M. and Mitchell, Stuart}, title = {Khovanov{\textquoteright}s {Heisenberg} category, moments in free probability, and shifted symmetric functions}, journal = {Algebraic Combinatorics}, pages = {49--74}, publisher = {MathOA foundation}, volume = {2}, number = {1}, year = {2019}, doi = {10.5802/alco.32}, mrnumber = {3912168}, zbl = {1405.05188}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.32/} }
TY - JOUR AU - Kvinge, Henry AU - Licata, Anthony M. AU - Mitchell, Stuart TI - Khovanov’s Heisenberg category, moments in free probability, and shifted symmetric functions JO - Algebraic Combinatorics PY - 2019 SP - 49 EP - 74 VL - 2 IS - 1 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.32/ DO - 10.5802/alco.32 LA - en ID - ALCO_2019__2_1_49_0 ER -
%0 Journal Article %A Kvinge, Henry %A Licata, Anthony M. %A Mitchell, Stuart %T Khovanov’s Heisenberg category, moments in free probability, and shifted symmetric functions %J Algebraic Combinatorics %D 2019 %P 49-74 %V 2 %N 1 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.32/ %R 10.5802/alco.32 %G en %F ALCO_2019__2_1_49_0
Kvinge, Henry; Licata, Anthony M.; Mitchell, Stuart. Khovanov’s Heisenberg category, moments in free probability, and shifted symmetric functions. Algebraic Combinatorics, Volume 2 (2019) no. 1, pp. 49-74. doi : 10.5802/alco.32. https://alco.centre-mersenne.org/articles/10.5802/alco.32/
[1] Relations between cumulants in noncommutative probability, Adv. Math., Volume 282 (2015), pp. 56-92 | DOI | MR | Zbl
[2] Representations of symmetric groups and free probability, Adv. Math., Volume 138 (1998) no. 1, pp. 126-181 | DOI | MR | Zbl
[3] Characters of symmetric groups and free cumulants, Asymptotic combinatorics with applications to mathematical physics (St. Petersburg, 2001) (Lecture Notes in Mathematics), Volume 1815, Springer, 2003, pp. 185-200 | DOI | MR | Zbl
[4] W-algebras from Heisenberg categories, J. Inst. Math. Jussieu, Volume 17 (2017) no. 5, pp. 981-1017 | DOI | MR | Zbl
[5] The centres of symmetric group rings, Proc. R. Soc. Lond., Ser. A, Volume 250 (1959), pp. 212-221 | MR | Zbl
[6] Random matrices, free probability, planar algebras and subfactors, Quanta of maths (Clay Mathematics Proceedings), Volume 11, American Mathematical Society, 2010, pp. 201-239 | MR | Zbl
[7] Quantum probability and spectral analysis of graphs, Theoretical and Mathematical Physics, Springer, 2007, xviii+371 pages | Zbl
[8] The algebra of conjugacy classes in symmetric groups, and partial permutations, Zap. Nauchn. Semin. (POMI), Volume 256 (1999), pp. 95-120 | Zbl
[9] Kerov’s central limit theorem for the Plancherel measure on Young diagrams, Symmetric functions 2001: surveys of developments and perspectives (NATO Science Series II: Mathematics, Physics and Chemistry), Volume 74, Kluwer Academic Publishers, 2002, pp. 93-151 | MR | Zbl
[10] Transition probabilities of continual Young diagrams and the Markov moment problem, Funkts. Anal. Prilozh., Volume 27 (1993) no. 2, pp. 32-49 | MR | Zbl
[11] Anisotropic Young diagrams and symmetric Jack functions, Funkts. Anal. Prilozh., Volume 34 (2000) no. 1, pp. 51-64 | MR | Zbl
[12] Polynomial functions on the set of Young diagrams, C. R. Math. Acad. Sci. Paris, Volume 319 (1994) no. 2, pp. 121-126 | MR | Zbl
[13] Heisenberg algebra and a graphical calculus, Fundam. Math., Volume 225 (2014) no. 1, pp. 169-210 | DOI | MR | Zbl
[14] Vertex operators and the class algebras of symmetric groups, Zap. Nauchn. Semin. (POMI), Volume 283 (2001), pp. 156-177 | Zbl
[15] Jack polynomials and free cumulants, Adv. Math., Volume 222 (2009) no. 6, pp. 2227-2269 | DOI | MR | Zbl
[16] Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, Clarendon Press, 2015, xii+475 pages | Zbl
[17] Quantum immanants and higher Capelli identities, Transform. Groups, Volume 1 (1996) no. 1-2, pp. 99-126 | DOI | MR | Zbl
[18] Shifted Schur functions, Algebra Anal., Volume 9 (1997) no. 2, pp. 73-146 | MR
[19] Boolean convolution, Free probability theory (Waterloo, ON, 1995) (Fields Institute Communications), Volume 12, American Mathematical Society, 1997, pp. 267-279 | MR | Zbl
[20] Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, 1999, xii+581 pages | MR | Zbl
[21] A new approach to representation theory of symmetric groups. II, Zap. Nauchn. Semin. (POMI), Volume 307 (2004), pp. 57-98
Cited by Sources: