Given two finite-dimensional representations and of , when is there such that is isomorphic to a subrepresentation of ? When is there a third representation such that is a subrepresentation of ? We call these the questions of asymptotic and catalytic containment, respectively.
We answer both questions in terms of an explicit family of inequalities. These inequalities are generically necessary and sufficient in the following sense. If two representations satisfy all inequalities strictly, then asymptotic and catalytic containment follow (the former in generic cases). Conversely, if asymptotic or catalytic containment holds, then the inequalities must hold non-strictly. These results are an instance of a recent Vergleichsstellensatz applied to the representation semiring.
Revised:
Accepted:
Published online:
Keywords: Schur positivity, Schur polynomial, asymptotic representation theory, $\mathrm{SL}(n,\mathbb{C})$, $\mathrm{SU}(n)$, preordered semiring, Vergleichsstellensatz
Fritz, Tobias 1
CC-BY 4.0
@article{ALCO_2024__7_2_327_0,
author = {Fritz, Tobias},
title = {Asymptotic and catalytic containment of representations of $\mathrm{SU}(n)$},
journal = {Algebraic Combinatorics},
pages = {327--336},
year = {2024},
publisher = {The Combinatorics Consortium},
volume = {7},
number = {2},
doi = {10.5802/alco.338},
language = {en},
url = {https://alco.centre-mersenne.org/articles/10.5802/alco.338/}
}
TY - JOUR
AU - Fritz, Tobias
TI - Asymptotic and catalytic containment of representations of $\mathrm{SU}(n)$
JO - Algebraic Combinatorics
PY - 2024
SP - 327
EP - 336
VL - 7
IS - 2
PB - The Combinatorics Consortium
UR - https://alco.centre-mersenne.org/articles/10.5802/alco.338/
DO - 10.5802/alco.338
LA - en
ID - ALCO_2024__7_2_327_0
ER -
%0 Journal Article
%A Fritz, Tobias
%T Asymptotic and catalytic containment of representations of $\mathrm{SU}(n)$
%J Algebraic Combinatorics
%D 2024
%P 327-336
%V 7
%N 2
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.338/
%R 10.5802/alco.338
%G en
%F ALCO_2024__7_2_327_0
Fritz, Tobias. Asymptotic and catalytic containment of representations of $\mathrm{SU}(n)$. Algebraic Combinatorics, Volume 7 (2024) no. 2, pp. 327-336. doi: 10.5802/alco.338
[1] On the generating functions of totally positive sequences, Proc. Nat. Acad. Sci. U.S.A., Volume 37 (1951), pp. 303-307 | DOI | MR | Zbl
[2] On the generating functions of totally positive sequences. I, J. Analyse Math., Volume 2 (1952), pp. 93-103 | DOI | MR
[3] The lattice of integer partitions, Discrete Math., Volume 6 (1973), pp. 201-219 | DOI | MR
[4] Characterizing the asymptotic and catalytic stochastic orders on topological abelian groups, 2020 (to appear in Bernoulli) | arXiv
[5] Abstract Vergleichsstellensätze for preordered semifields and semirings I, SIAM J. Appl. Algebra Geom., Volume 7 (2023) no. 2, pp. 505-547 | DOI | MR | Zbl
[6] Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+581 pages | DOI | MR
[7] Functional equations on the -hypergroup, Math. Pannon., Volume 23 (2012) no. 2, pp. 187-193 | MR | Zbl
Cited by Sources: