We define a family of algebras which generalise the Farahat–Higman algebra introduced in [4] by replacing the role of the center of the group algebra of the symmetric groups with centraliser algebras of symmetric groups. These algebras have a basis indexed by marked cycle shapes, combinatorial objects which generalise proper integer partitions. We analyse properties of marked cycle shapes and of the algebras , demonstrating that some of the former govern the latter. The main theorem of the paper proves that the algebra is isomorphic to the tensor product of the degenerate affine Hecke algebra with the algebra of symmetric functions.
Revised:
Accepted:
Published online:
Keywords: symmetric group, Farahat–Higman algebra, centralizer, degenerate affine Hecke algebra
Creedon, Samuel 1
@article{ALCO_2024__7_2_337_0, author = {Creedon, Samuel}, title = {A centralizer analogue to the {Farahat{\textendash}Higman} algebra}, journal = {Algebraic Combinatorics}, pages = {337--360}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {2}, year = {2024}, doi = {10.5802/alco.336}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.336/} }
TY - JOUR AU - Creedon, Samuel TI - A centralizer analogue to the Farahat–Higman algebra JO - Algebraic Combinatorics PY - 2024 SP - 337 EP - 360 VL - 7 IS - 2 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.336/ DO - 10.5802/alco.336 LA - en ID - ALCO_2024__7_2_337_0 ER -
Creedon, Samuel. A centralizer analogue to the Farahat–Higman algebra. Algebraic Combinatorics, Volume 7 (2024) no. 2, pp. 337-360. doi : 10.5802/alco.336. https://alco.centre-mersenne.org/articles/10.5802/alco.336/
[1] Defining an affine partition algebra, Algebr. Represent. Theory, Volume 26 (2023) no. 6, pp. 2913-2965 | DOI | MR
[2] The centralizer of a subgroup in a group algebra, Proc. Edinb. Math. Soc. (2), Volume 56 (2013) no. 1, pp. 49-56 | DOI | MR
[3] La catégorie des représentations du groupe symétrique , lorsque n’est pas un entier naturel, Algebraic groups and homogeneous spaces (Tata Inst. Fund. Res. Stud. Math.), Volume 19, Tata Inst. Fund. Res., Mumbai, 2007, pp. 209-273 | MR | Zbl
[4] The centres of symmetric group rings, Proc. Roy. Soc. London Ser. A, Volume 250 (1959), pp. 212-221 | DOI | MR
[5] Symmetric functions and Macdonald’s result for top connexion coefficients in the symmetric group, J. Algebra, Volume 166 (1994) no. 2, pp. 364-378 | DOI | MR
[6] Oligomorphic groups and tensor categories, 2022 | arXiv
[7] The algebra of conjugacy classes in symmetric groups, and partial permutations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Volume 256 (1999), p. 95-120, 265 | DOI | MR
[8] Symmetric polynomials and the center of the symmetric group ring, Rep. Mathematical Phys., Volume 5 (1974) no. 1, pp. 107-112 | DOI | MR
[9] Stable Centres II: Finite Classical Groups, 2021 | arXiv
[10] Heisenberg algebra and a graphical calculus, Fund. Math., Volume 225 (2014) no. 1, pp. 169-210 | DOI | MR
[11] Linear and projective representations of symmetric groups, Cambridge Tracts in Mathematics, 163, Cambridge University Press, Cambridge, 2005, xiv+277 pages | DOI | MR
[12] Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995, x+475 pages | DOI | MR
[13] Partial isomorphisms over finite fields, J. Algebraic Combin., Volume 40 (2014) no. 1, pp. 83-136 | DOI | MR
[14] Degenerate affine Hecke algebras and centralizer construction for the symmetric groups, J. Algebra, Volume 237 (2001) no. 1, pp. 302-341 | DOI | MR | Zbl
[15] The idempotents of the symmetric group and Nakayama’s conjecture, J. Algebra, Volume 81 (1983) no. 1, pp. 258-265 | DOI | MR
[16] A new approach to the representation theory of symmetric groups. II, J. Math. Sci. (N.Y.), Volume 131 (2005), pp. 5471-5494 | DOI
[17] Stability of the centers of the symplectic group rings , J. Algebra, Volume 572 (2021), pp. 263-296 | DOI | MR
[18] Stable centres of wreath products, Algebr. Comb., Volume 6 (2023) no. 2, pp. 413-455 | MR
[19] The centers of spin symmetric group algebras and Catalan numbers, J. Algebraic Combin., Volume 29 (2009) no. 2, pp. 175-193 | DOI | MR
[20] Stability of the centers of group algebras of , Adv. Math., Volume 349 (2019), pp. 749-780 | DOI | MR
[21] The Farahat-Higman ring of wreath products and Hilbert schemes, Adv. Math., Volume 187 (2004) no. 2, pp. 417-446 | DOI | MR
Cited by Sources: