Tree expansions of some Lie idempotents
Algebraic Combinatorics, Volume 7 (2024) no. 5, pp. 1261-1282.

We prove that the Catalan Lie idempotent D n (a,b), introduced in [Menous et al., Adv. Appl. Math. 51 (2013), 177] can be refined by introducing n independent parameters a 0 ,...,a n-1 and that the coefficient of each monomial is itself a Lie idempotent in the descent algebra. These new idempotents are multiplicity-free sums of subsets of the Poincaré-Birkhoff-Witt basis of the Lie module. These results are obtained by embedding noncommutative symmetric functions into the dual noncommutative Connes-Kreimer algebra, which also allows us to interpret, and rederive in a simpler way, Chapoton’s results on a two-parameter tree expanded series.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.373
Classification: 16T30, 05E05, 17D25
Keywords: Noncommutative symmetric functions, Lie idempotents, Free Lie algebra, Dendriform algebras, PreLie algebras

Menous, Frédéric 1; Novelli, Jean-Christophe 2; Thibon, Jean-Yves 2

1 Laboratoire de Mathématiques Bât. 425 Université Paris-Sud 91405 Orsay Cedex France
2 Laboratoire d’Informatique Gaspard-Monge, Université Gustave Eiffel, CNRS, ENPC, ESIEE-Paris 5 Boulevard Descartes Champs-sur-Marne 77454 Marne-la-Vallée cedex 2 France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2024__7_5_1261_0,
     author = {Menous, Fr\'ed\'eric and Novelli, Jean-Christophe and Thibon, Jean-Yves},
     title = {Tree expansions of some {Lie} idempotents},
     journal = {Algebraic Combinatorics},
     pages = {1261--1282},
     publisher = {The Combinatorics Consortium},
     volume = {7},
     number = {5},
     year = {2024},
     doi = {10.5802/alco.373},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.373/}
}
TY  - JOUR
AU  - Menous, Frédéric
AU  - Novelli, Jean-Christophe
AU  - Thibon, Jean-Yves
TI  - Tree expansions of some Lie idempotents
JO  - Algebraic Combinatorics
PY  - 2024
SP  - 1261
EP  - 1282
VL  - 7
IS  - 5
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.373/
DO  - 10.5802/alco.373
LA  - en
ID  - ALCO_2024__7_5_1261_0
ER  - 
%0 Journal Article
%A Menous, Frédéric
%A Novelli, Jean-Christophe
%A Thibon, Jean-Yves
%T Tree expansions of some Lie idempotents
%J Algebraic Combinatorics
%D 2024
%P 1261-1282
%V 7
%N 5
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.373/
%R 10.5802/alco.373
%G en
%F ALCO_2024__7_5_1261_0
Menous, Frédéric; Novelli, Jean-Christophe; Thibon, Jean-Yves. Tree expansions of some Lie idempotents. Algebraic Combinatorics, Volume 7 (2024) no. 5, pp. 1261-1282. doi : 10.5802/alco.373. https://alco.centre-mersenne.org/articles/10.5802/alco.373/

[1] Björner, Anders; Wachs, Michelle L. Permutation statistics and linear extensions of posets, J. Combin. Theory Ser. A, Volume 58 (1991) no. 1, pp. 85-114 | DOI | MR | Zbl

[2] Breuer, Felix; Klivans, Caroline J. Scheduling problems, J. Combin. Theory Ser. A, Volume 139 (2016), pp. 59-79 | DOI | MR | Zbl

[3] Chapoton, Frédéric A rooted-trees q-series lifting a one-parameter family of Lie idempotents, Algebra Number Theory, Volume 3 (2009) no. 6, pp. 611-636 | DOI | MR | Zbl

[4] Chapoton, Frédéric Sur une série en arbres à deux paramètres, Sém. Lothar. Combin., Volume 70 (2013), Paper no. B70a, 20 pages | MR | Zbl

[5] Chapoton, Frédéric q-analogues of Ehrhart polynomials, Proc. Edinb. Math. Soc. (2), Volume 59 (2016) no. 2, pp. 339-358 | DOI | MR | Zbl

[6] Duchamp, Gérard; Hivert, Florent; Thibon, Jean-Yves Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras, Internat. J. Algebra Comput., Volume 12 (2002) no. 5, pp. 671-717 | DOI | MR | Zbl

[7] Duchamp, Gérard H. E.; Hivert, Florent; Novelli, Jean-Christophe; Thibon, Jean-Yves Noncommutative symmetric functions VII: free quasi-symmetric functions revisited, Ann. Comb., Volume 15 (2011) no. 4, pp. 655-673 | DOI | MR | Zbl

[8] Foissy, Loïc Les algèbres de Hopf des arbres enracinés décorés. I, Bull. Sci. Math., Volume 126 (2002) no. 3, pp. 193-239 | DOI | MR | Zbl

[9] Foissy, Loïc Les algèbres de Hopf des arbres enracinés décorés. II, Bull. Sci. Math., Volume 126 (2002) no. 4, pp. 249-288 | DOI | MR | Zbl

[10] Foissy, Loïc Free brace algebras are free pre-Lie algebras, Comm. Algebra, Volume 38 (2010) no. 9, pp. 3358-3369 | DOI | MR | Zbl

[11] Foissy, Loïc; Menous, Frédéric; Novelli, Jean-Christophe; Thibon, Jean-Yves Quadri-algebras, preLie algebras, and the Catalan family of Lie idempotents, Algebr. Comb., Volume 5 (2022) no. 4, pp. 629-666 | DOI | Numdam | MR | Zbl

[12] Foissy, Loïc; Novelli, Jean-Christophe; Thibon, Jean-Yves Polynomial realizations of some combinatorial Hopf algebras, J. Noncommut. Geom., Volume 8 (2014) no. 1, pp. 141-162 | DOI | MR | Zbl

[13] Krob, D.; Leclerc, B.; Thibon, J.-Y. Noncommutative symmetric functions. II. Transformations of alphabets, Internat. J. Algebra Comput., Volume 7 (1997) no. 2, pp. 181-264 | DOI | MR | Zbl

[14] Manchon, Dominique Hopf algebras, from basics to applications to renormalization, 2006 | arXiv

[15] Menous, Frédéric; Novelli, Jean-Christophe; Thibon, Jean-Yves Mould calculus, polyhedral cones, and characters of combinatorial Hopf algebras, Adv. in Appl. Math., Volume 51 (2013) no. 2, pp. 177-227 | DOI | MR | Zbl

[16] Novelli, Jean-Christophe; Thibon, Jean-Yves Superization and (q,t)-specialization in combinatorial Hopf algebras, Electron. J. Combin., Volume 16 (2009) no. 2, Paper no. 21, 46 pages | DOI | MR | Zbl

[17] Rota, Gian-Carlo Baxter algebras and combinatorial identities. I, Bull. Amer. Math. Soc., Volume 75 (1969), pp. 325-329 | DOI | MR | Zbl

[18] Rota, Gian-Carlo Baxter algebras and combinatorial identities. II, Bull. Amer. Math. Soc., Volume 75 (1969), pp. 330-334 | DOI | MR | Zbl

[19] Salvatore, Paolo; Tauraso, Roberto The operad Lie is free, J. Pure Appl. Algebra, Volume 213 (2009) no. 2, pp. 224-230 | DOI | MR | Zbl

[20] White, Jacob A. Quasisymmetric functions from combinatorial Hopf monoids and Ehrhart theory, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) (Discrete Math. Theor. Comput. Sci. Proc.), Volume BC, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2016, pp. 1215-1226 | MR | Zbl

[21] Wright, David; Zhao, Wenhua D-log and formal flow for analytic isomorphisms of n-space, Trans. Amer. Math. Soc., Volume 355 (2003) no. 8, pp. 3117-3141 | DOI | MR | Zbl

Cited by Sources: