We prove that the Catalan Lie idempotent , introduced in [Menous et al., Adv. Appl. Math. 51 (2013), 177] can be refined by introducing independent parameters and that the coefficient of each monomial is itself a Lie idempotent in the descent algebra. These new idempotents are multiplicity-free sums of subsets of the Poincaré-Birkhoff-Witt basis of the Lie module. These results are obtained by embedding noncommutative symmetric functions into the dual noncommutative Connes-Kreimer algebra, which also allows us to interpret, and rederive in a simpler way, Chapoton’s results on a two-parameter tree expanded series.
Revised:
Accepted:
Published online:
Keywords: Noncommutative symmetric functions, Lie idempotents, Free Lie algebra, Dendriform algebras, PreLie algebras
Menous, Frédéric 1; Novelli, Jean-Christophe 2; Thibon, Jean-Yves 2
@article{ALCO_2024__7_5_1261_0, author = {Menous, Fr\'ed\'eric and Novelli, Jean-Christophe and Thibon, Jean-Yves}, title = {Tree expansions of some {Lie} idempotents}, journal = {Algebraic Combinatorics}, pages = {1261--1282}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {5}, year = {2024}, doi = {10.5802/alco.373}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.373/} }
TY - JOUR AU - Menous, Frédéric AU - Novelli, Jean-Christophe AU - Thibon, Jean-Yves TI - Tree expansions of some Lie idempotents JO - Algebraic Combinatorics PY - 2024 SP - 1261 EP - 1282 VL - 7 IS - 5 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.373/ DO - 10.5802/alco.373 LA - en ID - ALCO_2024__7_5_1261_0 ER -
%0 Journal Article %A Menous, Frédéric %A Novelli, Jean-Christophe %A Thibon, Jean-Yves %T Tree expansions of some Lie idempotents %J Algebraic Combinatorics %D 2024 %P 1261-1282 %V 7 %N 5 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.373/ %R 10.5802/alco.373 %G en %F ALCO_2024__7_5_1261_0
Menous, Frédéric; Novelli, Jean-Christophe; Thibon, Jean-Yves. Tree expansions of some Lie idempotents. Algebraic Combinatorics, Volume 7 (2024) no. 5, pp. 1261-1282. doi : 10.5802/alco.373. https://alco.centre-mersenne.org/articles/10.5802/alco.373/
[1] Permutation statistics and linear extensions of posets, J. Combin. Theory Ser. A, Volume 58 (1991) no. 1, pp. 85-114 | DOI | MR | Zbl
[2] Scheduling problems, J. Combin. Theory Ser. A, Volume 139 (2016), pp. 59-79 | DOI | MR | Zbl
[3] A rooted-trees -series lifting a one-parameter family of Lie idempotents, Algebra Number Theory, Volume 3 (2009) no. 6, pp. 611-636 | DOI | MR | Zbl
[4] Sur une série en arbres à deux paramètres, Sém. Lothar. Combin., Volume 70 (2013), Paper no. B70a, 20 pages | MR | Zbl
[5] -analogues of Ehrhart polynomials, Proc. Edinb. Math. Soc. (2), Volume 59 (2016) no. 2, pp. 339-358 | DOI | MR | Zbl
[6] Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras, Internat. J. Algebra Comput., Volume 12 (2002) no. 5, pp. 671-717 | DOI | MR | Zbl
[7] Noncommutative symmetric functions VII: free quasi-symmetric functions revisited, Ann. Comb., Volume 15 (2011) no. 4, pp. 655-673 | DOI | MR | Zbl
[8] Les algèbres de Hopf des arbres enracinés décorés. I, Bull. Sci. Math., Volume 126 (2002) no. 3, pp. 193-239 | DOI | MR | Zbl
[9] Les algèbres de Hopf des arbres enracinés décorés. II, Bull. Sci. Math., Volume 126 (2002) no. 4, pp. 249-288 | DOI | MR | Zbl
[10] Free brace algebras are free pre-Lie algebras, Comm. Algebra, Volume 38 (2010) no. 9, pp. 3358-3369 | DOI | MR | Zbl
[11] Quadri-algebras, preLie algebras, and the Catalan family of Lie idempotents, Algebr. Comb., Volume 5 (2022) no. 4, pp. 629-666 | DOI | Numdam | MR | Zbl
[12] Polynomial realizations of some combinatorial Hopf algebras, J. Noncommut. Geom., Volume 8 (2014) no. 1, pp. 141-162 | DOI | MR | Zbl
[13] Noncommutative symmetric functions. II. Transformations of alphabets, Internat. J. Algebra Comput., Volume 7 (1997) no. 2, pp. 181-264 | DOI | MR | Zbl
[14] Hopf algebras, from basics to applications to renormalization, 2006 | arXiv
[15] Mould calculus, polyhedral cones, and characters of combinatorial Hopf algebras, Adv. in Appl. Math., Volume 51 (2013) no. 2, pp. 177-227 | DOI | MR | Zbl
[16] Superization and -specialization in combinatorial Hopf algebras, Electron. J. Combin., Volume 16 (2009) no. 2, Paper no. 21, 46 pages | DOI | MR | Zbl
[17] Baxter algebras and combinatorial identities. I, Bull. Amer. Math. Soc., Volume 75 (1969), pp. 325-329 | DOI | MR | Zbl
[18] Baxter algebras and combinatorial identities. II, Bull. Amer. Math. Soc., Volume 75 (1969), pp. 330-334 | DOI | MR | Zbl
[19] The operad Lie is free, J. Pure Appl. Algebra, Volume 213 (2009) no. 2, pp. 224-230 | DOI | MR | Zbl
[20] Quasisymmetric functions from combinatorial Hopf monoids and Ehrhart theory, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) (Discrete Math. Theor. Comput. Sci. Proc.), Volume BC, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2016, pp. 1215-1226 | MR | Zbl
[21] D-log and formal flow for analytic isomorphisms of -space, Trans. Amer. Math. Soc., Volume 355 (2003) no. 8, pp. 3117-3141 | DOI | MR | Zbl
Cited by Sources: