We study a system of linear equations associated with Sudoku latin squares. The coefficient matrix of the normal system has various symmetries arising from Sudoku. From this, we find the eigenvalues and eigenvectors of , and compute a generalized inverse. Then, using linear perturbation methods, we obtain a fractional completion guarantee for sufficiently large and sparse rectangular-box Sudoku puzzles.
Revised:
Accepted:
Published online:
Keywords: Sudoku, latin square, coherent configuration, perturbation
Dukes, Peter J. 1; Nimegeers, Kate I. 1
@article{ALCO_2024__7_5_1283_0, author = {Dukes, Peter J. and Nimegeers, Kate I.}, title = {The linear system for {Sudoku} and a fractional completion threshold}, journal = {Algebraic Combinatorics}, pages = {1283--1305}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {5}, year = {2024}, doi = {10.5802/alco.375}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.375/} }
TY - JOUR AU - Dukes, Peter J. AU - Nimegeers, Kate I. TI - The linear system for Sudoku and a fractional completion threshold JO - Algebraic Combinatorics PY - 2024 SP - 1283 EP - 1305 VL - 7 IS - 5 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.375/ DO - 10.5802/alco.375 LA - en ID - ALCO_2024__7_5_1283_0 ER -
%0 Journal Article %A Dukes, Peter J. %A Nimegeers, Kate I. %T The linear system for Sudoku and a fractional completion threshold %J Algebraic Combinatorics %D 2024 %P 1283-1305 %V 7 %N 5 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.375/ %R 10.5802/alco.375 %G en %F ALCO_2024__7_5_1283_0
Dukes, Peter J.; Nimegeers, Kate I. The linear system for Sudoku and a fractional completion threshold. Algebraic Combinatorics, Volume 7 (2024) no. 5, pp. 1283-1305. doi : 10.5802/alco.375. https://alco.centre-mersenne.org/articles/10.5802/alco.375/
[1] Spectrum of free-form Sudoku graphs, Open Math., Volume 16 (2018) no. 1, pp. 1445-1454 | DOI | MR | Zbl
[2] Clique decompositions of multipartite graphs and completion of Latin squares, J. Combin. Theory Ser. A, Volume 151 (2017), pp. 146-201 | DOI | MR | Zbl
[3] Completions of -dense partial Latin squares, J. Combin. Des., Volume 21 (2013) no. 10, pp. 447-463 | DOI | MR | Zbl
[4] Fractional triangle decompositions of dense 3-partite graphs, J. Comb., Volume 10 (2019) no. 2, pp. 255-282 | DOI | MR | Zbl
[5] Solving Sudoku: structures and strategies, Missouri J. Math. Sci., Volume 29 (2017) no. 1, pp. 12-18 | DOI | MR | Zbl
[6] Completing partial latin squares where each row, column and symbol is used at most times, 1985 (Reports, Dept. of Mathematics, University of Stockholm)
[7] Completion of sparse partial Latin squares, Graph theory and combinatorics (Cambridge, 1983), Academic Press, London, 1984, pp. 127-132 | MR | Zbl
[8] Decompositions of large graphs and digraphs with high minimum degree, Ph. D. Thesis, Stockholm University (1991)
[9] Coherent configurations. I, Rend. Sem. Mat. Univ. Padova, Volume 44 (1970), pp. 1-25 | Numdam | MR | Zbl
[10] Matrix analysis, Cambridge University Press, Cambridge, 1985, xiii+561 pages | DOI | MR
[11] Mutually orthogonal Sudoku Latin squares and their graphs, Graphs Combin., Volume 39 (2023) no. 6, Paper no. 122, 26 pages | DOI | MR | Zbl
[12] Fractional clique decompositions of dense partite graphs, Combin. Probab. Comput., Volume 26 (2017) no. 6, pp. 911-943 | DOI | MR | Zbl
[13] Pseudoku: A Sudoku Adjacency Algebra and a Fractional Completion Threshold, Masters thesis, University of Victoria (2024)
[14] Sudoku: strategy versus structure, Amer. Math. Monthly, Volume 116 (2009) no. 8, pp. 702-707 | DOI | MR | Zbl
[15] Sudoku graphs are integral, Electron. J. Combin., Volume 16 (2009) no. 1, Paper no. 25, 7 pages | DOI | MR | Zbl
[16] SageMath, the Sage Mathematics Software System (Version 9.3) (2021) https://www.sagemath.org
Cited by Sources: