We develop the theory of pretty good quantum fractional revival in arbitrary sized subsets of a graph, including the theory for fractional cospectrality of subsets of arbitrary size. We use this theory to give conditions under which diagonal perturbation can induce pretty good fractional revival, and give several examples.
Revised:
Accepted:
Published online:
Keywords: pretty good, fractional revival, diagonal perturbation
Drazen, Whitney ; Kempton, Mark 1; Lippner, Gabor 2
@article{ALCO_2024__7_5_1507_0, author = {Drazen, Whitney and Kempton, Mark and Lippner, Gabor}, title = {Pretty good fractional revival via diagonal perturbation: theory and examples}, journal = {Algebraic Combinatorics}, pages = {1507--1523}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {5}, year = {2024}, doi = {10.5802/alco.379}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.379/} }
TY - JOUR AU - Drazen, Whitney AU - Kempton, Mark AU - Lippner, Gabor TI - Pretty good fractional revival via diagonal perturbation: theory and examples JO - Algebraic Combinatorics PY - 2024 SP - 1507 EP - 1523 VL - 7 IS - 5 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.379/ DO - 10.5802/alco.379 LA - en ID - ALCO_2024__7_5_1507_0 ER -
%0 Journal Article %A Drazen, Whitney %A Kempton, Mark %A Lippner, Gabor %T Pretty good fractional revival via diagonal perturbation: theory and examples %J Algebraic Combinatorics %D 2024 %P 1507-1523 %V 7 %N 5 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.379/ %R 10.5802/alco.379 %G en %F ALCO_2024__7_5_1507_0
Drazen, Whitney; Kempton, Mark; Lippner, Gabor. Pretty good fractional revival via diagonal perturbation: theory and examples. Algebraic Combinatorics, Volume 7 (2024) no. 5, pp. 1507-1523. doi : 10.5802/alco.379. https://alco.centre-mersenne.org/articles/10.5802/alco.379/
[1] Fundamentals of fractional revival in graphs, Linear Algebra Appl., Volume 655 (2022), pp. 129-158 | DOI | MR | Zbl
[2] Quantum fractional revival on graphs, Discrete Appl. Math., Volume 269 (2019), pp. 86-98 | DOI | MR | Zbl
[3] Pretty good quantum fractional revival in paths and cycles, Algebr. Comb., Volume 4 (2021) no. 6, pp. 989-1004 | DOI | Numdam | MR | Zbl
[4] Pretty good quantum state transfer in asymmetric graphs via potential, Discrete Math., Volume 342 (2019) no. 10, pp. 2821-2833 | DOI | MR | Zbl
[5] Number-Theoretic Nature of Communication in Quantum Spin Systems, Phys. Rev. Lett., Volume 109 (2012), p. 050502 | DOI
[6] Strongly cospectral vertices, 2017 | arXiv
[7] Perfect state transfer on graphs with a potential, Quantum Inf. Comput., Volume 17 (2017) no. 3-4, pp. 303-327 | MR
[8] Pretty good quantum state transfer in symmetric spin networks via magnetic field, Quantum Inf. Process., Volume 16 (2017) no. 9, Paper no. 210, 23 pages | DOI | MR | Zbl
[9] Algebra, Graduate Texts in Mathematics, 211, Springer-Verlag New York, 2002 | DOI
[10] Almost perfect state transfer in quantum spin chains, Physical Review A, Volume 86 (2012), Paper no. 052319, 10 pages | DOI
Cited by Sources: