On the Kronecker product of Schur functions of square shapes
Algebraic Combinatorics, Volume 7 (2024) no. 5, pp. 1575-1600.

Motivated by the Saxl conjecture and the tensor square conjecture, which states that the tensor squares of certain irreducible representations of the symmetric group contain all irreducible representations, we study the tensor squares of irreducible representations associated with square Young diagrams. We give a formula for computing Kronecker coefficients, which are indexed by two square partitions and a three-row partition, specifically one with a short second row and the smallest part equal to 1. We also prove the positivity of square Kronecker coefficients for particular families of partitions, including three-row partitions and near-hooks.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.381
Classification: 05E10
Keywords: Kronecker coefficients, symmetric group representations, Saxl conjecture

Zhao, Chenchen 1

1 University of Southern California Department of Mathematics 3620 S. Vermont Ave. Los Angeles CA 90005 USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2024__7_5_1575_0,
     author = {Zhao, Chenchen},
     title = {On the {Kronecker} product of {Schur} functions of square shapes},
     journal = {Algebraic Combinatorics},
     pages = {1575--1600},
     publisher = {The Combinatorics Consortium},
     volume = {7},
     number = {5},
     year = {2024},
     doi = {10.5802/alco.381},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.381/}
}
TY  - JOUR
AU  - Zhao, Chenchen
TI  - On the Kronecker product of Schur functions of square shapes
JO  - Algebraic Combinatorics
PY  - 2024
SP  - 1575
EP  - 1600
VL  - 7
IS  - 5
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.381/
DO  - 10.5802/alco.381
LA  - en
ID  - ALCO_2024__7_5_1575_0
ER  - 
%0 Journal Article
%A Zhao, Chenchen
%T On the Kronecker product of Schur functions of square shapes
%J Algebraic Combinatorics
%D 2024
%P 1575-1600
%V 7
%N 5
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.381/
%R 10.5802/alco.381
%G en
%F ALCO_2024__7_5_1575_0
Zhao, Chenchen. On the Kronecker product of Schur functions of square shapes. Algebraic Combinatorics, Volume 7 (2024) no. 5, pp. 1575-1600. doi : 10.5802/alco.381. https://alco.centre-mersenne.org/articles/10.5802/alco.381/

[1] Ballantine, C. M.; Orellana, R. C. On the Kronecker product s (n-p,p) *s λ , Electron. J. Combin., Volume 12 (2005), Paper no. 28, 26 pages | DOI | MR | Zbl

[2] Bessenrodt, C.; Bowman, C.; Sutton, L. Kronecker positivity and 2-modular representation theory, Trans. Amer. Math. Soc. Ser. B, Volume 8 (2021), pp. 1024-1055 | DOI | MR | Zbl

[3] Blasiak, Jonah Kronecker coefficients for one hook shape, Sém. Lothar. Combin., Volume 77 ([2016–2018]), Paper no. B77c, 40 pages | MR | Zbl

[4] Bürgisser, Peter; Ikenmeyer, Christian The complexity of computing Kronecker coefficients, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008) (Discrete Math. Theor. Comput. Sci. Proc.), Volume AJ, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2008, pp. 357-368 | MR | Zbl

[5] Christandl, Matthias; Harrow, Aram W.; Mitchison, Graeme Nonzero Kronecker coefficients and what they tell us about spectra, Comm. Math. Phys., Volume 270 (2007) no. 3, pp. 575-585 | DOI | MR | Zbl

[6] Dou, Donna Q. J.; Tang, Robert L.; King, Ronald C. A hive model determination of multiplicity-free Schur function products and skew Schur functions, 2009 | arXiv

[7] Gutschwager, Christian On multiplicity-free skew characters and the Schubert calculus, Ann. Comb., Volume 14 (2010) no. 3, pp. 339-353 | DOI | MR | Zbl

[8] Heide, Gerhard; Saxl, Jan; Tiep, Pham Huu; Zalesski, Alexandre E. Conjugacy action, induced representations and the Steinberg square for simple groups of Lie type, Proc. Lond. Math. Soc. (3), Volume 106 (2013) no. 4, pp. 908-930 | DOI | MR | Zbl

[9] Ikenmeyer, Christian The Saxl conjecture and the dominance order, Discrete Math., Volume 338 (2015) no. 11, pp. 1970-1975 | DOI | MR | Zbl

[10] Ikenmeyer, Christian; Mulmuley, Ketan D.; Walter, Michael On vanishing of Kronecker coefficients, Comput. Complexity, Volume 26 (2017) no. 4, pp. 949-992 | DOI | MR | Zbl

[11] Ikenmeyer, Christian; Panova, Greta Rectangular Kronecker coefficients and plethysms in geometric complexity theory, Adv. Math., Volume 319 (2017), pp. 40-66 | DOI | MR | Zbl

[12] Li, Xin Saxl conjecture for triple hooks, Discrete Math., Volume 344 (2021) no. 6, Paper no. 112340, 19 pages | DOI | MR | Zbl

[13] Littlewood, D. E. Products and plethysms of characters with orthogonal, symplectic and symmetric groups, Canadian J. Math., Volume 10 (1958), pp. 17-32 | DOI | MR | Zbl

[14] Liu, Ricky Ini A simplified Kronecker rule for one hook shape, Proc. Amer. Math. Soc., Volume 145 (2017) no. 9, pp. 3657-3664 | DOI | MR | Zbl

[15] Luo, Sammy; Sellke, Mark The Saxl conjecture for fourth powers via the semigroup property, J. Algebraic Combin., Volume 45 (2017) no. 1, pp. 33-80 | DOI | MR | Zbl

[16] Pak, Igor; Panova, Greta Strict unimodality of q-binomial coefficients, C. R. Math. Acad. Sci. Paris, Volume 351 (2013) no. 11-12, pp. 415-418 | DOI | Numdam | MR | Zbl

[17] Pak, Igor; Panova, Greta Unimodality via Kronecker products, J. Algebraic Combin., Volume 40 (2014) no. 4, pp. 1103-1120 | DOI | MR | Zbl

[18] Pak, Igor; Panova, Greta On the complexity of computing Kronecker coefficients, Comput. Complexity, Volume 26 (2017) no. 1, pp. 1-36 | DOI | MR | Zbl

[19] Pak, Igor; Panova, Greta; Vallejo, Ernesto Kronecker products, characters, partitions, and the tensor square conjectures, Adv. Math., Volume 288 (2016), pp. 702-731 | DOI | MR | Zbl

[20] Panova, Greta Complexity and asymptotics of structure constants, 2023 | arXiv

[21] Remmel, Jeffrey B. A formula for the Kronecker products of Schur functions of hook shapes, J. Algebra, Volume 120 (1989) no. 1, pp. 100-118 | DOI | MR | Zbl

[22] Remmel, Jeffrey B.; Whitehead, Tamsen On the Kronecker product of Schur functions of two row shapes, Bull. Belg. Math. Soc. Simon Stevin, Volume 1 (1994) no. 5, pp. 649-683 http://projecteuclid.org/euclid.bbms/1103408635 | MR | Zbl

[23] Sagan, Bruce E. The symmetric group: Representations, combinatorial algorithms, and symmetric functions, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1991, xviii+197 pages | MR

[24] Stanley, Richard P. Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+581 pages | DOI | MR

[25] Stanley, Richard P. Positivity problems and conjectures in algebraic combinatorics, Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, pp. 295-319 | MR | Zbl

[26] Stein, W. A. et al. Sage Mathematics Software (Version 9.6) (2022) (http://www.sagemath.org)

[27] Thomas, Hugh; Yong, Alexander Multiplicity-free Schubert calculus, Canad. Math. Bull., Volume 53 (2010) no. 1, pp. 171-186 | DOI | MR | Zbl

[28] Vallejo, Ernesto A diagrammatic approach to Kronecker squares, J. Combin. Theory Ser. A, Volume 127 (2014), pp. 243-285 | DOI | MR | Zbl

Cited by Sources: