Strange expectations in affine Weyl groups
Algebraic Combinatorics, Volume 7 (2024) no. 5, pp. 1551-1574.

Our main result is a generalization, to all affine Weyl groups, of P. Johnson’s proof of D. Armstrong’s conjecture for the expected number of boxes in a simultaneous core. This extends earlier results by the second and third authors in simply-laced type. We do this by modifying and refining the appropriate notion of the “size” of a simultaneous core. In addition, we provide combinatorial core-like models for the coroot lattices in classical type and type G 2 .

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.383
Classification: 05E15, 20F55, 13F60
Keywords: affine Weyl groups, core partitions, Ehrhart theory, root systems

Stucky, Eric Nathan 1; Thiel, Marko 2; Williams, Nathan 3

1 Charles University Faculty of Mathematics and Physics Department of Algebra Sokolovska 83 18600 Praha 8 Czech Republic
2 Unaffiliated
3 University of Texas at Dallas Mathematical Sciences FO 2.402C 800 W. Campbell Rd. Richardson, TX 75080
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2024__7_5_1551_0,
     author = {Stucky, Eric Nathan and Thiel, Marko and Williams, Nathan},
     title = {Strange expectations in affine {Weyl} groups},
     journal = {Algebraic Combinatorics},
     pages = {1551--1574},
     publisher = {The Combinatorics Consortium},
     volume = {7},
     number = {5},
     year = {2024},
     doi = {10.5802/alco.383},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.383/}
}
TY  - JOUR
AU  - Stucky, Eric Nathan
AU  - Thiel, Marko
AU  - Williams, Nathan
TI  - Strange expectations in affine Weyl groups
JO  - Algebraic Combinatorics
PY  - 2024
SP  - 1551
EP  - 1574
VL  - 7
IS  - 5
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.383/
DO  - 10.5802/alco.383
LA  - en
ID  - ALCO_2024__7_5_1551_0
ER  - 
%0 Journal Article
%A Stucky, Eric Nathan
%A Thiel, Marko
%A Williams, Nathan
%T Strange expectations in affine Weyl groups
%J Algebraic Combinatorics
%D 2024
%P 1551-1574
%V 7
%N 5
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.383/
%R 10.5802/alco.383
%G en
%F ALCO_2024__7_5_1551_0
Stucky, Eric Nathan; Thiel, Marko; Williams, Nathan. Strange expectations in affine Weyl groups. Algebraic Combinatorics, Volume 7 (2024) no. 5, pp. 1551-1574. doi : 10.5802/alco.383. https://alco.centre-mersenne.org/articles/10.5802/alco.383/

[1] Armstrong, Drew Rational Catalan Combinatorics, 2012 http://www.math.miami.edu/~armstrong/Talks/RCCinDC.pdf (Accessed 2015-05-12)

[2] Armstrong, Drew; Hanusa, Christopher R. H.; Jones, Brant C. Results and conjectures on simultaneous core partitions, European J. Combin., Volume 41 (2014), pp. 205-220 | DOI | MR | Zbl

[3] Burns, John M. An elementary proof of the “strange formula” of Freudenthal and de Vries, Q. J. Math., Volume 51 (2000) no. 3, pp. 295-297 | DOI | MR | Zbl

[4] Chapelier-Laget, Nathan; Gerber, Thomas Atomic length on Weyl groups, 2023 | arXiv

[5] Chen, William Y. C.; Huang, Harry H. Y.; Wang, Larry X. W. Average size of a self-conjugate (s,t)-core partition, Proc. Amer. Math. Soc., Volume 144 (2016) no. 4, pp. 1391-1399 | DOI | MR | Zbl

[6] Cotton, Benjamin; Williams, Nathan F. A core model for G 2 , Involve, Volume 14 (2021) no. 3, pp. 401-412 | DOI | MR | Zbl

[7] Dyson, Freeman J. Missed opportunities, Bull. Amer. Math. Soc., Volume 78 (1972), pp. 635-652 | DOI | MR | Zbl

[8] Fayers, Matthew The t-core of an s-core, J. Combin. Theory Ser. A, Volume 118 (2011) no. 5, pp. 1525-1539 | DOI | MR | Zbl

[9] Fishel, Susanna; Vazirani, Monica A bijection between dominant Shi regions and core partitions, European J. Combin., Volume 31 (2010) no. 8, pp. 2087-2101 | DOI | MR

[10] Haiman, Mark D. Conjectures on the quotient ring by diagonal invariants, J. Algebraic Combin., Volume 3 (1994) no. 1, pp. 17-76 | DOI | MR | Zbl

[11] Hanusa, Christopher R.H.; Jones, Brant C. Abacus models for parabolic quotients of affine Weyl groups, J. Algebra, Volume 361 (2012), pp. 134-162 | DOI | MR | Zbl

[12] Humphreys, James E. Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990, xii+204 pages | DOI | MR

[13] James, Gordon The Representation Theory of the Symmetric Group, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1984

[14] Johnson, Paul Lattice points and simultaneous core partitions, Electron. J. Combin., Volume 25 (2018) no. 3, Paper no. 3.47, 19 pages | DOI | MR | Zbl

[15] Kac, Victor G.; Peterson, Dale H. Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. in Math., Volume 53 (1984) no. 2, pp. 125-264 | DOI | MR | Zbl

[16] Lascoux, Alain Ordering the affine symmetric group, Algebraic combinatorics and applications (Gößweinstein, 1999), Springer, Berlin, 2001, pp. 219-231 | DOI | MR | Zbl

[17] Macdonald, I. G. Affine root systems and Dedekind’s η-function, Invent. Math., Volume 15 (1972), pp. 91-143 | DOI | MR | Zbl

[18] Sommers, Eric N. B-stable ideals in the nilradical of a Borel subalgebra, Canad. Math. Bull., Volume 48 (2005) no. 3, pp. 460-472 | DOI | MR | Zbl

[19] Stucky, Eric Nathan; Thiel, Marko; Williams, Nathan Strange expectations in affine Weyl groups, Sém. Lothar. Combin., Volume 85B (2021), p. Art. 36, 12 | MR | Zbl

[20] Thiel, Marko; Williams, Nathan Strange expectations and simultaneous cores, J. Algebraic Combin., Volume 46 (2017) no. 1, pp. 219-261 | DOI | MR | Zbl

[21] Vandehey, Joseph Containment in (s,t)-core Partitions, Undergraduate thesis, University of Oregon (2008) | arXiv

Cited by Sources: