Our main result is a generalization, to all affine Weyl groups, of P. Johnson’s proof of D. Armstrong’s conjecture for the expected number of boxes in a simultaneous core. This extends earlier results by the second and third authors in simply-laced type. We do this by modifying and refining the appropriate notion of the “size” of a simultaneous core. In addition, we provide combinatorial core-like models for the coroot lattices in classical type and type .
Revised:
Accepted:
Published online:
Keywords: affine Weyl groups, core partitions, Ehrhart theory, root systems
Stucky, Eric Nathan 1; Thiel, Marko 2; Williams, Nathan 3
@article{ALCO_2024__7_5_1551_0, author = {Stucky, Eric Nathan and Thiel, Marko and Williams, Nathan}, title = {Strange expectations in affine {Weyl} groups}, journal = {Algebraic Combinatorics}, pages = {1551--1574}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {5}, year = {2024}, doi = {10.5802/alco.383}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.383/} }
TY - JOUR AU - Stucky, Eric Nathan AU - Thiel, Marko AU - Williams, Nathan TI - Strange expectations in affine Weyl groups JO - Algebraic Combinatorics PY - 2024 SP - 1551 EP - 1574 VL - 7 IS - 5 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.383/ DO - 10.5802/alco.383 LA - en ID - ALCO_2024__7_5_1551_0 ER -
%0 Journal Article %A Stucky, Eric Nathan %A Thiel, Marko %A Williams, Nathan %T Strange expectations in affine Weyl groups %J Algebraic Combinatorics %D 2024 %P 1551-1574 %V 7 %N 5 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.383/ %R 10.5802/alco.383 %G en %F ALCO_2024__7_5_1551_0
Stucky, Eric Nathan; Thiel, Marko; Williams, Nathan. Strange expectations in affine Weyl groups. Algebraic Combinatorics, Volume 7 (2024) no. 5, pp. 1551-1574. doi : 10.5802/alco.383. https://alco.centre-mersenne.org/articles/10.5802/alco.383/
[1] Rational Catalan Combinatorics, 2012 http://www.math.miami.edu/~armstrong/Talks/RCCinDC.pdf (Accessed 2015-05-12)
[2] Results and conjectures on simultaneous core partitions, European J. Combin., Volume 41 (2014), pp. 205-220 | DOI | MR | Zbl
[3] An elementary proof of the “strange formula” of Freudenthal and de Vries, Q. J. Math., Volume 51 (2000) no. 3, pp. 295-297 | DOI | MR | Zbl
[4] Atomic length on Weyl groups, 2023 | arXiv
[5] Average size of a self-conjugate -core partition, Proc. Amer. Math. Soc., Volume 144 (2016) no. 4, pp. 1391-1399 | DOI | MR | Zbl
[6] A core model for , Involve, Volume 14 (2021) no. 3, pp. 401-412 | DOI | MR | Zbl
[7] Missed opportunities, Bull. Amer. Math. Soc., Volume 78 (1972), pp. 635-652 | DOI | MR | Zbl
[8] The -core of an -core, J. Combin. Theory Ser. A, Volume 118 (2011) no. 5, pp. 1525-1539 | DOI | MR | Zbl
[9] A bijection between dominant Shi regions and core partitions, European J. Combin., Volume 31 (2010) no. 8, pp. 2087-2101 | DOI | MR
[10] Conjectures on the quotient ring by diagonal invariants, J. Algebraic Combin., Volume 3 (1994) no. 1, pp. 17-76 | DOI | MR | Zbl
[11] Abacus models for parabolic quotients of affine Weyl groups, J. Algebra, Volume 361 (2012), pp. 134-162 | DOI | MR | Zbl
[12] Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990, xii+204 pages | DOI | MR
[13] The Representation Theory of the Symmetric Group, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1984
[14] Lattice points and simultaneous core partitions, Electron. J. Combin., Volume 25 (2018) no. 3, Paper no. 3.47, 19 pages | DOI | MR | Zbl
[15] Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. in Math., Volume 53 (1984) no. 2, pp. 125-264 | DOI | MR | Zbl
[16] Ordering the affine symmetric group, Algebraic combinatorics and applications (Gößweinstein, 1999), Springer, Berlin, 2001, pp. 219-231 | DOI | MR | Zbl
[17] Affine root systems and Dedekind’s -function, Invent. Math., Volume 15 (1972), pp. 91-143 | DOI | MR | Zbl
[18] -stable ideals in the nilradical of a Borel subalgebra, Canad. Math. Bull., Volume 48 (2005) no. 3, pp. 460-472 | DOI | MR | Zbl
[19] Strange expectations in affine Weyl groups, Sém. Lothar. Combin., Volume 85B (2021), p. Art. 36, 12 | MR | Zbl
[20] Strange expectations and simultaneous cores, J. Algebraic Combin., Volume 46 (2017) no. 1, pp. 219-261 | DOI | MR | Zbl
[21] Containment in (s,t)-core Partitions, Undergraduate thesis, University of Oregon (2008) | arXiv
Cited by Sources: