Our first result realizes the toric variety of every marked chain-order polytope (MCOP) of the Gelfand–Tsetlin poset as an explicit Gröbner (sagbi) degeneration of the flag variety. This generalizes the Sturmfels/Gonciulea–Lakshmibai/Kogan–Miller construction for the Gelfand–Tsetlin degeneration to the MCOP setting. The key idea of our approach is to use pipe dreams to define realizations of toric varieties in Plücker coordinates. We then use this approach to generalize two more well-known constructions to arbitrary MCOPs: standard monomial theories such as those given by semistandard Young tableaux and PBW-monomial bases in irreducible representations such as the FFLV bases. In an addendum we introduce the notion of semi-infinite pipe dreams and use it to obtain an infinite family of poset polytopes each providing a toric degeneration of the semi-infinite Grassmannian.
Revised:
Accepted:
Published online:
Keywords: flag varieties, Lie algebra representations, toric varieties, lattice polytopes, Young tableaux
Makhlin, Igor 1
@article{ALCO_2024__7_5_1525_0, author = {Makhlin, Igor}, title = {Chain-order polytopes: toric degenerations, {Young} tableaux and monomial bases}, journal = {Algebraic Combinatorics}, pages = {1525--1550}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {5}, year = {2024}, doi = {10.5802/alco.384}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.384/} }
TY - JOUR AU - Makhlin, Igor TI - Chain-order polytopes: toric degenerations, Young tableaux and monomial bases JO - Algebraic Combinatorics PY - 2024 SP - 1525 EP - 1550 VL - 7 IS - 5 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.384/ DO - 10.5802/alco.384 LA - en ID - ALCO_2024__7_5_1525_0 ER -
%0 Journal Article %A Makhlin, Igor %T Chain-order polytopes: toric degenerations, Young tableaux and monomial bases %J Algebraic Combinatorics %D 2024 %P 1525-1550 %V 7 %N 5 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.384/ %R 10.5802/alco.384 %G en %F ALCO_2024__7_5_1525_0
Makhlin, Igor. Chain-order polytopes: toric degenerations, Young tableaux and monomial bases. Algebraic Combinatorics, Volume 7 (2024) no. 5, pp. 1525-1550. doi : 10.5802/alco.384. https://alco.centre-mersenne.org/articles/10.5802/alco.384/
[1] Toric degenerations of spherical varieties, Sel. Math., New Ser., Volume 10 (2004) no. 4, pp. 453-478 | DOI | Zbl
[2] Okounkov bodies and toric degenerations, Math. Ann., Volume 356 (2013) no. 3, pp. 1183-1202 | DOI | Zbl
[3] Gelfand–Tsetlin polytopes and Feigin–Fourier–Littelmann–Vinberg polytopes as marked poset polytopes, J. Comb. Theory, Ser. A, Volume 118 (2011) no. 8, pp. 2454-2462 | DOI | Zbl
[4] rc-graphs and Schubert polynomials, Exp. Math., Volume 2 (1993) no. 4, pp. 257-269 | DOI | Zbl
[5] Computing toric degenerations of flag varieties, Combinatorial algebraic geometry. Selected papers from the 2016 apprenticeship program, Ottawa, Canada, July–December 2016, Toronto: The Fields Institute for Research in the Mathematical Sciences; New York, NY: Springer, 2017, pp. 247-281 biblio.ugent.be/publication/8667468 | DOI | Zbl
[6] Weyl modules and -Whittaker functions, Math. Ann., Volume 359 (2014) no. 1-2, pp. 45-59 | DOI | Zbl
[7] Singular loci of Grassmann–Hibi toric varieties, Mich. Math. J., Volume 59 (2010) no. 2, pp. 243-267 | DOI | Zbl
[8] Toric degenerations of Schubert varieties, Transform. Groups, Volume 7 (2002) no. 1, pp. 51-60 | DOI | Zbl
[9] Weyl, Demazure and fusion modules for the current algebra of , Adv. Math., Volume 207 (2006) no. 2, pp. 928-960 | DOI | Zbl
[10] LS algebras and application to Schubert varieties, Transform. Groups, Volume 5 (2000) no. 3, pp. 245-264 | DOI | Zbl
[11] Seshadri stratifications and standard monomial theory, Invent. Math., Volume 234 (2023) no. 2, pp. 489-572 | DOI | Zbl
[12] Toric varieties, Grad. Stud. Math., 124, Providence, RI: American Mathematical Society (AMS), 2011 | Zbl
[13] Reduced arc schemes for Veronese embeddings and global Demazure modules, Commun. Contemp. Math., Volume 25 (2023) no. 8, Paper no. 2250034, 30 pages | DOI | Zbl
[14] Weighted PBW degenerations and tropical flag varieties, Commun. Contemp. Math., Volume 21 (2019) no. 1, Paper no. 1850016, 27 pages | DOI | Zbl
[15] Marked chain-order polytopes, Eur. J. Comb., Volume 58 (2016), pp. 267-282 | DOI | Zbl
[16] Essential bases and toric degenerations arising from birational sequences, Adv. Math., Volume 312 (2017), pp. 107-149 | DOI | Zbl
[17] On toric degenerations of flag varieties, Representation theory – Current trends and perspectives, Zürich: European Mathematical Society (EMS), 2017, pp. 187-232 | DOI | Zbl
[18] A continuous family of marked poset polytopes, SIAM J. Discrete Math., Volume 34 (2020) no. 1, pp. 611-639 | DOI | Zbl
[19] The Minkowski property and reflexivity of marked poset polytopes, Electron. J. Comb., Volume 27 (2020) no. 1, Paper no. p1.27, 19 pages | DOI | Zbl
[20] From standard monomial theory to semi-toric degenerations via Newton–Okounkov bodies, Trans. Mosc. Math. Soc., Volume 2017 (2017), pp. 275-297 | DOI | Zbl
[21] Affine Kac–Moody algebras and semi-infinite flag manifolds, Commun. Math. Phys., Volume 128 (1990) no. 1, pp. 161-189 | DOI | Zbl
[22] degeneration of flag varieties, Sel. Math., New Ser., Volume 18 (2012) no. 3, pp. 513-537 | DOI | Zbl
[23] PBW filtration and bases for irreducible modules in type , Transform. Groups, Volume 16 (2011) no. 1, pp. 71-89 | DOI | Zbl
[24] PBW filtration and bases for symplectic Lie algebras, Int. Math. Res. Not., Volume 2011 (2011) no. 24, pp. 5760-5784 | DOI | Zbl
[25] Vertex algebras and coordinate rings of semi-infinite flags, Commun. Math. Phys., Volume 369 (2019) no. 1, pp. 221-244 | DOI | Zbl
[26] Relative poset polytopes and semitoric degenerations, Sel. Math., New Ser., Volume 30 (2024) no. 3, Paper no. 48, 38 pages | DOI | Zbl
[27] Beyond the Sottile–Sturmfels degeneration of a semi-infinite Grassmannian, Int. Math. Res. Not., Volume 2023 (2023) no. 12, pp. 10037-10066 | DOI | Zbl
[28] Semi-infinite flags. I: Case of global curve , Differential topology, infinite-dimensional Lie algebras, and applications. D. B. Fuchs’ 60th anniversary collection, Providence, RI: American Mathematical Society, 1999, pp. 81-112 | Zbl
[29] The Yang–Baxter equation, symmetric functions, and Schubert polynomials, Discrete Math., Volume 153 (1996) no. 1-3, pp. 123-143 | DOI | Zbl
[30] Newton–Okounkov polytopes of flag varieties and marked chain-order polytopes, Trans. Am. Math. Soc., Ser. B, Volume 10 (2023), pp. 452-481 | DOI | Zbl
[31] Finite-dimensional representations of the group of unimodular matrices, Dokl. Akad. Nauk SSSR, n. Ser., Volume 71 (1950), pp. 825-828 | Zbl
[32] Degenerations of flag and Schubert varieties to toric varieties, Transform. Groups, Volume 1 (1996) no. 3, pp. 215-248 | DOI | Zbl
[33] Canonical bases for cluster algebras, J. Am. Math. Soc., Volume 31 (2018) no. 2, pp. 497-608 | DOI | Zbl
[34] Distributive lattices, affine semigroup rings and algebras with straightening laws, Commutative algebra and combinatorics (Kyoto, 1985) (Adv. Stud. Pure Math.), Volume 11, North-Holland, Amsterdam, 1987, pp. 93-109 | DOI | MR | Zbl
[35] Demazure character formula for semi-infinite flag varieties, Math. Ann., Volume 371 (2018) no. 3-4, pp. 1769-1801 | DOI | Zbl
[36] Crystal bases and Newton–Okounkov bodies, Duke Math. J., Volume 164 (2015) no. 13, pp. 2461-2506 | DOI | Zbl
[37] Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory, Ann. Math. (2), Volume 176 (2012) no. 2, pp. 925-978 | DOI | Zbl
[38] Toward a theory of monomial preorders, Math. Comput., Volume 87 (2018) no. 313, pp. 2513-2537 | DOI | Zbl
[39] Schubert calculus and Gelfand–Zetlin polytopes, Russ. Math. Surv., Volume 67 (2012) no. 4, pp. 685-719 | DOI | Zbl
[40] Gröbner geometry of Schubert polynomials, Ann. Math. (2), Volume 161 (2005) no. 3, pp. 1245-1318 | DOI | Zbl
[41] Schubert geometry of flag varieties and Gelfand–Cetlin theory, Ph. D. Thesis, Massachusetts Institute of Technology (2000)
[42] Toric degeneration of Schubert varieties and Gelfand–Tsetlin polytopes, Adv. Math., Volume 193 (2005) no. 1, pp. 1-17 | DOI | Zbl
[43] Gelfand–Tsetlin degenerations of representations and flag varieties, Transform. Groups, Volume 27 (2022) no. 2, pp. 563-596 | DOI | Zbl
[44] Gröbner fans of Hibi ideals, generalized Hibi ideals and flag varieties, J. Comb. Theory, Ser. A, Volume 185 (2022), Paper no. 105541, 48 pages | DOI | Zbl
[45] Combinatorial commutative algebra, Grad. Texts Math., 227, New York, NY: Springer, 2005 | DOI | Zbl
[46] Toric degenerations of Grassmannians from matching fields, Algebr. Comb., Volume 2 (2019) no. 6, pp. 1109-1124 | DOI | Numdam | Zbl
[47] Monomial bases and branching rules, Transform. Groups, Volume 26 (2021) no. 3, pp. 995-1024 | DOI | Zbl
[48] On the coloured graph structure of Lusztig’s canonical basis, Math. Ann., Volume 307 (1997) no. 4, pp. 705-723 | DOI | Zbl
[49] Real rational curves in Grassmannians, J. Am. Math. Soc., Volume 13 (2000) no. 2, pp. 333-341 | DOI | Zbl
[50] A sagbi basis for the quantum Grassmannian, J. Pure Appl. Algebra, Volume 158 (2001) no. 2-3, pp. 347-366 | DOI | Zbl
[51] Two poset polytopes, Discrete Comput. Geom., Volume 1 (1986), pp. 9-23 | DOI | Zbl
[52] Algorithms in invariant theory, Texts Monogr. Symb. Comput., Wien: Springer-Verlag, 1993 | DOI | Zbl
Cited by Sources: