Chain-order polytopes: toric degenerations, Young tableaux and monomial bases
Algebraic Combinatorics, Volume 7 (2024) no. 5, pp. 1525-1550.

Our first result realizes the toric variety of every marked chain-order polytope (MCOP) of the Gelfand–Tsetlin poset as an explicit Gröbner (sagbi) degeneration of the flag variety. This generalizes the Sturmfels/Gonciulea–Lakshmibai/Kogan–Miller construction for the Gelfand–Tsetlin degeneration to the MCOP setting. The key idea of our approach is to use pipe dreams to define realizations of toric varieties in Plücker coordinates. We then use this approach to generalize two more well-known constructions to arbitrary MCOPs: standard monomial theories such as those given by semistandard Young tableaux and PBW-monomial bases in irreducible representations such as the FFLV bases. In an addendum we introduce the notion of semi-infinite pipe dreams and use it to obtain an infinite family of poset polytopes each providing a toric degeneration of the semi-infinite Grassmannian.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.384
Classification: 14M15, 17B10, 14M25, 52B20, 14D06
Keywords: flag varieties, Lie algebra representations, toric varieties, lattice polytopes, Young tableaux

Makhlin, Igor 1

1 Technische Universität Berlin Berlin Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2024__7_5_1525_0,
     author = {Makhlin, Igor},
     title = {Chain-order polytopes: toric degenerations, {Young} tableaux and monomial bases},
     journal = {Algebraic Combinatorics},
     pages = {1525--1550},
     publisher = {The Combinatorics Consortium},
     volume = {7},
     number = {5},
     year = {2024},
     doi = {10.5802/alco.384},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.384/}
}
TY  - JOUR
AU  - Makhlin, Igor
TI  - Chain-order polytopes: toric degenerations, Young tableaux and monomial bases
JO  - Algebraic Combinatorics
PY  - 2024
SP  - 1525
EP  - 1550
VL  - 7
IS  - 5
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.384/
DO  - 10.5802/alco.384
LA  - en
ID  - ALCO_2024__7_5_1525_0
ER  - 
%0 Journal Article
%A Makhlin, Igor
%T Chain-order polytopes: toric degenerations, Young tableaux and monomial bases
%J Algebraic Combinatorics
%D 2024
%P 1525-1550
%V 7
%N 5
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.384/
%R 10.5802/alco.384
%G en
%F ALCO_2024__7_5_1525_0
Makhlin, Igor. Chain-order polytopes: toric degenerations, Young tableaux and monomial bases. Algebraic Combinatorics, Volume 7 (2024) no. 5, pp. 1525-1550. doi : 10.5802/alco.384. https://alco.centre-mersenne.org/articles/10.5802/alco.384/

[1] Alexeev, Valery; Brion, Michel Toric degenerations of spherical varieties, Sel. Math., New Ser., Volume 10 (2004) no. 4, pp. 453-478 | DOI | Zbl

[2] Anderson, Dave Okounkov bodies and toric degenerations, Math. Ann., Volume 356 (2013) no. 3, pp. 1183-1202 | DOI | Zbl

[3] Ardila, Federico; Bliem, Thomas; Salazar, Dido Gelfand–Tsetlin polytopes and Feigin–Fourier–Littelmann–Vinberg polytopes as marked poset polytopes, J. Comb. Theory, Ser. A, Volume 118 (2011) no. 8, pp. 2454-2462 | DOI | Zbl

[4] Bergeron, Nantel; Billey, Sara rc-graphs and Schubert polynomials, Exp. Math., Volume 2 (1993) no. 4, pp. 257-269 | DOI | Zbl

[5] Bossinger, Lara; Lamboglia, Sara; Mincheva, Kalina; Mohammadi, Fatemeh Computing toric degenerations of flag varieties, Combinatorial algebraic geometry. Selected papers from the 2016 apprenticeship program, Ottawa, Canada, July–December 2016, Toronto: The Fields Institute for Research in the Mathematical Sciences; New York, NY: Springer, 2017, pp. 247-281 biblio.ugent.be/publication/8667468 | DOI | Zbl

[6] Braverman, Alexander; Finkelberg, Michael Weyl modules and q-Whittaker functions, Math. Ann., Volume 359 (2014) no. 1-2, pp. 45-59 | DOI | Zbl

[7] Brown, J.; Lakshmibai, V. Singular loci of Grassmann–Hibi toric varieties, Mich. Math. J., Volume 59 (2010) no. 2, pp. 243-267 | DOI | Zbl

[8] Caldero, Philippe Toric degenerations of Schubert varieties, Transform. Groups, Volume 7 (2002) no. 1, pp. 51-60 | DOI | Zbl

[9] Chari, Vyjayanthi; Loktev, Sergei Weyl, Demazure and fusion modules for the current algebra of 𝔰𝔩 r+1 , Adv. Math., Volume 207 (2006) no. 2, pp. 928-960 | DOI | Zbl

[10] Chirivì, R. LS algebras and application to Schubert varieties, Transform. Groups, Volume 5 (2000) no. 3, pp. 245-264 | DOI | Zbl

[11] Chirivì, Rocco; Fang, Xin; Littelmann, Peter Seshadri stratifications and standard monomial theory, Invent. Math., Volume 234 (2023) no. 2, pp. 489-572 | DOI | Zbl

[12] Cox, David A.; Little, John B.; Schenck, Henry K. Toric varieties, Grad. Stud. Math., 124, Providence, RI: American Mathematical Society (AMS), 2011 | Zbl

[13] Dumanski, Ilya; Feigin, Evgeny Reduced arc schemes for Veronese embeddings and global Demazure modules, Commun. Contemp. Math., Volume 25 (2023) no. 8, Paper no. 2250034, 30 pages | DOI | Zbl

[14] Fang, X.; Feigin, E.; Fourier, G.; Makhlin, I. Weighted PBW degenerations and tropical flag varieties, Commun. Contemp. Math., Volume 21 (2019) no. 1, Paper no. 1850016, 27 pages | DOI | Zbl

[15] Fang, Xin; Fourier, Ghislain Marked chain-order polytopes, Eur. J. Comb., Volume 58 (2016), pp. 267-282 | DOI | Zbl

[16] Fang, Xin; Fourier, Ghislain; Littelmann, Peter Essential bases and toric degenerations arising from birational sequences, Adv. Math., Volume 312 (2017), pp. 107-149 | DOI | Zbl

[17] Fang, Xin; Fourier, Ghislain; Littelmann, Peter On toric degenerations of flag varieties, Representation theory – Current trends and perspectives, Zürich: European Mathematical Society (EMS), 2017, pp. 187-232 | DOI | Zbl

[18] Fang, Xin; Fourier, Ghislain; Litza, Jan-Philipp; Pegel, Christoph A continuous family of marked poset polytopes, SIAM J. Discrete Math., Volume 34 (2020) no. 1, pp. 611-639 | DOI | Zbl

[19] Fang, Xin; Fourier, Ghislain; Pegel, Christoph The Minkowski property and reflexivity of marked poset polytopes, Electron. J. Comb., Volume 27 (2020) no. 1, Paper no. p1.27, 19 pages | DOI | Zbl

[20] Fang, Xin; Littelmann, Peter From standard monomial theory to semi-toric degenerations via Newton–Okounkov bodies, Trans. Mosc. Math. Soc., Volume 2017 (2017), pp. 275-297 | DOI | Zbl

[21] Feigin, Boris L.; Frenkel, Edward V. Affine Kac–Moody algebras and semi-infinite flag manifolds, Commun. Math. Phys., Volume 128 (1990) no. 1, pp. 161-189 | DOI | Zbl

[22] Feigin, Evgeny 𝔾 a M degeneration of flag varieties, Sel. Math., New Ser., Volume 18 (2012) no. 3, pp. 513-537 | DOI | Zbl

[23] Feigin, Evgeny; Fourier, Ghislain; Littelmann, Peter PBW filtration and bases for irreducible modules in type A n , Transform. Groups, Volume 16 (2011) no. 1, pp. 71-89 | DOI | Zbl

[24] Feigin, Evgeny; Fourier, Ghislain; Littelmann, Peter PBW filtration and bases for symplectic Lie algebras, Int. Math. Res. Not., Volume 2011 (2011) no. 24, pp. 5760-5784 | DOI | Zbl

[25] Feigin, Evgeny; Makedonskyi, Ievgen Vertex algebras and coordinate rings of semi-infinite flags, Commun. Math. Phys., Volume 369 (2019) no. 1, pp. 221-244 | DOI | Zbl

[26] Feigin, Evgeny; Makhlin, Igor Relative poset polytopes and semitoric degenerations, Sel. Math., New Ser., Volume 30 (2024) no. 3, Paper no. 48, 38 pages | DOI | Zbl

[27] Feigin, Evgeny; Makhlin, Igor; Popkovich, Alexander Beyond the Sottile–Sturmfels degeneration of a semi-infinite Grassmannian, Int. Math. Res. Not., Volume 2023 (2023) no. 12, pp. 10037-10066 | DOI | Zbl

[28] Finkelberg, Michael; Mirković, Ivan Semi-infinite flags. I: Case of global curve 1 , Differential topology, infinite-dimensional Lie algebras, and applications. D. B. Fuchs’ 60th anniversary collection, Providence, RI: American Mathematical Society, 1999, pp. 81-112 | Zbl

[29] Fomin, Sergey; Kirillov, Anatol N. The Yang–Baxter equation, symmetric functions, and Schubert polynomials, Discrete Math., Volume 153 (1996) no. 1-3, pp. 123-143 | DOI | Zbl

[30] Fujita, Naoki Newton–Okounkov polytopes of flag varieties and marked chain-order polytopes, Trans. Am. Math. Soc., Ser. B, Volume 10 (2023), pp. 452-481 | DOI | Zbl

[31] Gel’fand, I. M.; Tsetlin, M. L. Finite-dimensional representations of the group of unimodular matrices, Dokl. Akad. Nauk SSSR, n. Ser., Volume 71 (1950), pp. 825-828 | Zbl

[32] Gonciulea, N.; Lakshmibai, V. Degenerations of flag and Schubert varieties to toric varieties, Transform. Groups, Volume 1 (1996) no. 3, pp. 215-248 | DOI | Zbl

[33] Gross, Mark; Hacking, Paul; Keel, Sean; Kontsevich, Maxim Canonical bases for cluster algebras, J. Am. Math. Soc., Volume 31 (2018) no. 2, pp. 497-608 | DOI | Zbl

[34] Hibi, Takayuki Distributive lattices, affine semigroup rings and algebras with straightening laws, Commutative algebra and combinatorics (Kyoto, 1985) (Adv. Stud. Pure Math.), Volume 11, North-Holland, Amsterdam, 1987, pp. 93-109 | DOI | MR | Zbl

[35] Kato, Syu Demazure character formula for semi-infinite flag varieties, Math. Ann., Volume 371 (2018) no. 3-4, pp. 1769-1801 | DOI | Zbl

[36] Kaveh, Kiumars Crystal bases and Newton–Okounkov bodies, Duke Math. J., Volume 164 (2015) no. 13, pp. 2461-2506 | DOI | Zbl

[37] Kaveh, Kiumars; Khovanskii, A. G. Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory, Ann. Math. (2), Volume 176 (2012) no. 2, pp. 925-978 | DOI | Zbl

[38] Kemper, Gregor; Trung, Ngo Viet; Nguyen, Thi van Anh Toward a theory of monomial preorders, Math. Comput., Volume 87 (2018) no. 313, pp. 2513-2537 | DOI | Zbl

[39] Kirichenko, V. A.; Smirnov, E. Yu.; Timorin, V. A. Schubert calculus and Gelfand–Zetlin polytopes, Russ. Math. Surv., Volume 67 (2012) no. 4, pp. 685-719 | DOI | Zbl

[40] Knutson, Allen; Miller, Ezra Gröbner geometry of Schubert polynomials, Ann. Math. (2), Volume 161 (2005) no. 3, pp. 1245-1318 | DOI | Zbl

[41] Kogan, M. Schubert geometry of flag varieties and Gelfand–Cetlin theory, Ph. D. Thesis, Massachusetts Institute of Technology (2000)

[42] Kogan, Mikhail; Miller, Ezra Toric degeneration of Schubert varieties and Gelfand–Tsetlin polytopes, Adv. Math., Volume 193 (2005) no. 1, pp. 1-17 | DOI | Zbl

[43] Makhlin, I. Gelfand–Tsetlin degenerations of representations and flag varieties, Transform. Groups, Volume 27 (2022) no. 2, pp. 563-596 | DOI | Zbl

[44] Makhlin, Igor Gröbner fans of Hibi ideals, generalized Hibi ideals and flag varieties, J. Comb. Theory, Ser. A, Volume 185 (2022), Paper no. 105541, 48 pages | DOI | Zbl

[45] Miller, Ezra; Sturmfels, Bernd Combinatorial commutative algebra, Grad. Texts Math., 227, New York, NY: Springer, 2005 | DOI | Zbl

[46] Mohammadi, Fatemeh; Shaw, Kristin Toric degenerations of Grassmannians from matching fields, Algebr. Comb., Volume 2 (2019) no. 6, pp. 1109-1124 | DOI | Numdam | Zbl

[47] Molev, Alexander; Yakimova, Oksana Monomial bases and branching rules, Transform. Groups, Volume 26 (2021) no. 3, pp. 995-1024 | DOI | Zbl

[48] Reineke, Markus On the coloured graph structure of Lusztig’s canonical basis, Math. Ann., Volume 307 (1997) no. 4, pp. 705-723 | DOI | Zbl

[49] Sottile, Frank Real rational curves in Grassmannians, J. Am. Math. Soc., Volume 13 (2000) no. 2, pp. 333-341 | DOI | Zbl

[50] Sottile, Frank; Sturmfels, Bernd A sagbi basis for the quantum Grassmannian, J. Pure Appl. Algebra, Volume 158 (2001) no. 2-3, pp. 347-366 | DOI | Zbl

[51] Stanley, Richard P. Two poset polytopes, Discrete Comput. Geom., Volume 1 (1986), pp. 9-23 | DOI | Zbl

[52] Sturmfels, Bernd Algorithms in invariant theory, Texts Monogr. Symb. Comput., Wien: Springer-Verlag, 1993 | DOI | Zbl

Cited by Sources: