Birational rowmotion and the octahedron recurrence
Algebraic Combinatorics, Volume 7 (2024) no. 5, pp. 1453-1477.

We use the octahedron recurrence to give a simplified statement and proof of a formula for iterated birational rowmotion on a product of two chains, first described by Musiker and Roby. Using this, we show that weights of certain chains in rectangles shift in a predictable way under the action of rowmotion. We then define generalized Stanley–Thomas words whose cyclic rotation uniquely determines birational rowmotion on the product of two chains. We also discuss the relationship between rowmotion and birational RSK and give a birational analogue of Greene’s theorem in this setting.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.385
Classification: 05E18, 05A05
Keywords: rowmotion, RSK correspondence, octahedron recurrence, Stanley–Thomas words

Johnson, Joseph 1; Liu, Ricky Ini 2

1 KTH Royal Institute of Technology Department of Mathematics Stockholm 114 28 (Sweden)
2 University of Washington Department of Mathematics Seattle WA 98195 (USA)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2024__7_5_1453_0,
     author = {Johnson, Joseph and Liu, Ricky Ini},
     title = {Birational rowmotion and the octahedron recurrence},
     journal = {Algebraic Combinatorics},
     pages = {1453--1477},
     publisher = {The Combinatorics Consortium},
     volume = {7},
     number = {5},
     year = {2024},
     doi = {10.5802/alco.385},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.385/}
}
TY  - JOUR
AU  - Johnson, Joseph
AU  - Liu, Ricky Ini
TI  - Birational rowmotion and the octahedron recurrence
JO  - Algebraic Combinatorics
PY  - 2024
SP  - 1453
EP  - 1477
VL  - 7
IS  - 5
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.385/
DO  - 10.5802/alco.385
LA  - en
ID  - ALCO_2024__7_5_1453_0
ER  - 
%0 Journal Article
%A Johnson, Joseph
%A Liu, Ricky Ini
%T Birational rowmotion and the octahedron recurrence
%J Algebraic Combinatorics
%D 2024
%P 1453-1477
%V 7
%N 5
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.385/
%R 10.5802/alco.385
%G en
%F ALCO_2024__7_5_1453_0
Johnson, Joseph; Liu, Ricky Ini. Birational rowmotion and the octahedron recurrence. Algebraic Combinatorics, Volume 7 (2024) no. 5, pp. 1453-1477. doi : 10.5802/alco.385. https://alco.centre-mersenne.org/articles/10.5802/alco.385/

[1] Brouwer, A. E.; Schrijver, A. On the period of an operator, defined on antichains, Mathematisch Centrum, Afdeling Zuivere Wiskunde ZW 24/74, Mathematisch Centrum, Amsterdam, 1974, i+13 pages | MR

[2] Cameron, P. J.; Fon-Der-Flaass, D. G. Orbits of antichains revisited, European J. Combin., Volume 16 (1995) no. 6, pp. 545-554 | DOI | MR | Zbl

[3] Danilov, V. I.; Koshevoy, G. A. The octahedron recurrence and RSK-correspondence, Sém. Lothar. Combin., Volume 54A (2005/07), Paper no. B54An, 16 pages | MR | Zbl

[4] Einstein, David; Propp, James Piecewise-linear and birational toggling, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) (Discrete Math. Theor. Comput. Sci. Proc., AT), Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2014, pp. 513-524 | MR | Zbl

[5] Einstein, David; Propp, James Combinatorial, piecewise-linear, and birational homomesy for products of two chains, Algebr. Comb., Volume 4 (2021) no. 2, pp. 201-224 | DOI | Numdam | MR | Zbl

[6] Farber, Miriam; Hopkins, Sam; Trongsiriwat, Wuttisak Interlacing networks: birational RSK, the octahedron recurrence, and Schur function identities, J. Combin. Theory Ser. A, Volume 133 (2015), pp. 339-371 | DOI | MR | Zbl

[7] Gessel, Ira; Viennot, Gérard Determinants, paths, and plane partitions, 1989 https://people.brandeis.edu/~gessel/homepage/papers/pp.pdf

[8] Greene, Curtis An extension of Schensted’s theorem, Advances in Math., Volume 14 (1974), pp. 254-265 | DOI | MR | Zbl

[9] Grinberg, Darij; Roby, Tom Iterative properties of birational rowmotion II: rectangles and triangles, Electron. J. Combin., Volume 22 (2015) no. 3, Paper no. 3.40, 49 pages | MR | Zbl

[10] Grinberg, Darij; Roby, Tom Iterative properties of birational rowmotion I: generalities and skeletal posets, Electron. J. Combin., Volume 23 (2016) no. 1, Paper no. 1.33, 40 pages | MR | Zbl

[11] Hopkins, Sam RSK Via Local Transformations, 2014 https://www.samuelfhopkins.com/docs/rsk.pdf

[12] Hopkins, Sam Cyclic sieving for plane partitions and symmetry, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 16 (2020), Paper no. 130, 40 pages | DOI | MR | Zbl

[13] Johnson, Joseph; Liu, Ricky Ini Plane partitions and rowmotion on rectangular and trapezoidal posets, 2023 | arXiv

[14] Joseph, Michael; Roby, Tom Birational and noncommutative lifts of antichain toggling and rowmotion, Algebr. Comb., Volume 3 (2020) no. 4, pp. 955-984 | DOI | Numdam | MR | Zbl

[15] Joseph, Michael; Roby, Tom A birational lifting of the Stanley-Thomas word on products of two chains, Discrete Math. Theor. Comput. Sci., Volume 23 (2021) no. 1, Paper no. 17, 20 pages | MR | Zbl

[16] Kirillov, Anatol N. Introduction to tropical combinatorics, Physics and combinatorics, 2000 (Nagoya), World Sci. Publ., River Edge, NJ, 2001, pp. 82-150 | DOI | MR | Zbl

[17] Krattenthaler, C. Growth diagrams, and increasing and decreasing chains in fillings of Ferrers shapes, Adv. in Appl. Math., Volume 37 (2006) no. 3, pp. 404-431 | DOI | MR | Zbl

[18] Lindström, Bernt On the vector representations of induced matroids, Bull. London Math. Soc., Volume 5 (1973), pp. 85-90 | DOI | MR | Zbl

[19] Musiker, Gregg; Roby, Tom Paths to understanding birational rowmotion on products of two chains, Algebr. Comb., Volume 2 (2019) no. 2, pp. 275-304 | DOI | Numdam | MR | Zbl

[20] Noumi, Masatoshi; Yamada, Yasuhiko Tropical Robinson-Schensted-Knuth correspondence and birational Weyl group actions, Representation theory of algebraic groups and quantum groups (Adv. Stud. Pure Math.), Volume 40, Math. Soc. Japan, Tokyo, 2004, pp. 371-442 | DOI | MR | Zbl

[21] O’Connell, Neil; Seppäläinen, Timo; Zygouras, Nikos Geometric RSK correspondence, Whittaker functions and symmetrized random polymers, Invent. Math., Volume 197 (2014) no. 2, pp. 361-416 | DOI | MR | Zbl

[22] Pak, Igor Hook length formula and geometric combinatorics, Sém. Lothar. Combin., Volume 46 (2001/02), Paper no. B46f, 13 pages | MR | Zbl

[23] Propp, James; Roby, Tom Homomesy in products of two chains, Electron. J. Combin., Volume 22 (2015) no. 3, Paper no. 3.4, 29 pages | MR | Zbl

[24] Sagan, Bruce E. The symmetric group. Representations, combinatorial algorithms, and symmetric functions, Graduate Texts in Mathematics, 203, Springer-Verlag, New York, 2001, xvi+238 pages | DOI | MR

[25] Stanley, Richard P. Two poset polytopes, Discrete Comput. Geom., Volume 1 (1986) no. 1, pp. 9-23 | DOI | MR | Zbl

[26] Stanley, Richard P. Promotion and evacuation, Electron. J. Combin., Volume 16 (2009) no. 2, Paper no. 9, 24 pages (Special volume in honor of Anders Björner) | MR | Zbl

[27] Striker, Jessica; Williams, Nathan Promotion and rowmotion, European J. Combin., Volume 33 (2012) no. 8, pp. 1919-1942 | DOI | MR

[28] Thomas, H.; Williams, N. Rowmotion in slow motion, Proc. Lond. Math. Soc. (3), Volume 119 (2019) no. 5, pp. 1149-1178 | DOI | MR | Zbl

Cited by Sources: