Much of dynamical algebraic combinatorics focuses on global dynamical systems defined via maps that are compositions of local toggle operators. The second author and Roby studied such maps that result from toggling independent sets of a path graph. We investigate a “toric” analogue of this work by analyzing the dynamics arising from toggling independent sets of a cycle graph. Each orbit in the dynamical system can be encoded via a grid of 0s and 1s; two commuting bijections on the set of 1s in this grid produce torsors for what we call the infinite snake group and the finite ouroboros groups. By studying related covering maps, we deduce precise combinatorial properties of the orbits. Because the snake and ouroboros groups are abelian, they define tilings of cylinders and tori by parallelograms, which we also characterize. Many of the ideas developed here should be adaptable both to other toggle actions in combinatorics and to other cellular automata.
Accepted:
Published online:
DOI: 10.5802/alco.386
Mots-clés : dynamical algebraic combinatorics, independent set, toggle group, snake group, snakes on a plane, ouroboros on a torus, torsor
Defant, Colin 1; Joseph, Michael 2; Macauley, Matthew 3; McDonough, Alex 4
@article{ALCO_2024__7_6_1695_0, author = {Defant, Colin and Joseph, Michael and Macauley, Matthew and McDonough, Alex}, title = {Torsors and {Tilings} from {Toric} {Toggling}}, journal = {Algebraic Combinatorics}, pages = {1695--1729}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {6}, year = {2024}, doi = {10.5802/alco.386}, zbl = {07966775}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.386/} }
TY - JOUR AU - Defant, Colin AU - Joseph, Michael AU - Macauley, Matthew AU - McDonough, Alex TI - Torsors and Tilings from Toric Toggling JO - Algebraic Combinatorics PY - 2024 SP - 1695 EP - 1729 VL - 7 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.386/ DO - 10.5802/alco.386 LA - en ID - ALCO_2024__7_6_1695_0 ER -
%0 Journal Article %A Defant, Colin %A Joseph, Michael %A Macauley, Matthew %A McDonough, Alex %T Torsors and Tilings from Toric Toggling %J Algebraic Combinatorics %D 2024 %P 1695-1729 %V 7 %N 6 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.386/ %R 10.5802/alco.386 %G en %F ALCO_2024__7_6_1695_0
Defant, Colin; Joseph, Michael; Macauley, Matthew; McDonough, Alex. Torsors and Tilings from Toric Toggling. Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1695-1729. doi : 10.5802/alco.386. https://alco.centre-mersenne.org/articles/10.5802/alco.386/
[1] On the period of an operator, defined on antichains, Mathematisch Centrum, Afdeling Zuivere Wiskunde, ZW 24/74, Mathematisch Centrum, Amsterdam, 1974, i+13 pages | MR
[2] Orbits of antichains revisited, European J. Combin., Volume 16 (1995) no. 6, pp. 545-554 | DOI | MR | Zbl
[3] Dynamical algebraic combinatorics, asynchronous cellular automata, and toggling independent sets, 27th IFIP WG 1.5 International Workshop on Cellular Automata and Discrete Complex Systems (OASIcs OpenAccess Ser. Inform.), Volume 90, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2021, p. Art. No. 5, 16 | DOI | MR | Zbl
[4] Toric promotion, Proc. Amer. Math. Soc., Volume 151 (2023) no. 1, pp. 45-57 | DOI | MR | Zbl
[5] Torsors from toggling independent sets, Sém. Lothar. Combin., Volume 86B (2022), Paper no. 85, 12 pages | MR | Zbl
[6] Toric partial orders, Trans. Amer. Math. Soc., Volume 368 (2016) no. 4, pp. 2263-2287 | DOI | MR | Zbl
[7] Noncrossing partitions, toggles, and homomesies, Electron. J. Combin., Volume 23 (2016) no. 3, Paper no. 3.52, 26 pages | DOI | MR | Zbl
[8] Some instances of homomesy among ideals of posets, Electron. J. Combin., Volume 28 (2021) no. 1, Paper no. 1.60, 23 pages | DOI | MR | Zbl
[9] Antichain toggling and rowmotion, Electron. J. Combin., Volume 26 (2019) no. 1, Paper no. 1.29, 43 pages | DOI | MR | Zbl
[10] Toggling independent sets of a path graph, Electron. J. Combin., Volume 25 (2018) no. 1, Paper no. 1.18, 31 pages | DOI | MR | Zbl
[11] Order independence in asynchronous cellular automata, J. Cell. Autom., Volume 3 (2008) no. 1, pp. 37-56 | MR | Zbl
[12] Dynamics groups of asynchronous cellular automata, J. Algebraic Combin., Volume 33 (2011) no. 1, pp. 11-35 | DOI | MR | Zbl
[13] On the action of the toggle group of the Dynkin diagram of type , Algebr. Comb., Volume 5 (2022) no. 1, pp. 149-161 | DOI | Numdam | MR | Zbl
[14] On orbits of antichains of positive roots, European J. Combin., Volume 30 (2009) no. 2, pp. 586-594 | DOI | MR | Zbl
[15] Dynamical algebraic combinatorics and the homomesy phenomenon, Recent trends in combinatorics (IMA Vol. Math. Appl.), Volume 159, Springer, [Cham], 2016, pp. 619-652 | DOI | MR | Zbl
[16] The toggle group, homomesy, and the Razumov-Stroganov correspondence, Electron. J. Combin., Volume 22 (2015) no. 2, Paper no. 2.57, 17 pages | DOI | MR | Zbl
[17] Dynamical algebraic combinatorics: promotion, rowmotion, and resonance, Notices Amer. Math. Soc., Volume 64 (2017) no. 6, pp. 543-549 | DOI | MR | Zbl
[18] Promotion and rowmotion, European J. Combin., Volume 33 (2012) no. 8, pp. 1919-1942 | DOI | MR | Zbl
Cited by Sources: