Torsors and Tilings from Toric Toggling
Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1695-1729.

Much of dynamical algebraic combinatorics focuses on global dynamical systems defined via maps that are compositions of local toggle operators. The second author and Roby studied such maps that result from toggling independent sets of a path graph. We investigate a “toric” analogue of this work by analyzing the dynamics arising from toggling independent sets of a cycle graph. Each orbit in the dynamical system can be encoded via a grid of 0s and 1s; two commuting bijections on the set of 1s in this grid produce torsors for what we call the infinite snake group and the finite ouroboros groups. By studying related covering maps, we deduce precise combinatorial properties of the orbits. Because the snake and ouroboros groups are abelian, they define tilings of cylinders and tori by parallelograms, which we also characterize. Many of the ideas developed here should be adaptable both to other toggle actions in combinatorics and to other cellular automata.

Received:
Accepted:
Published online:
DOI: 10.5802/alco.386
Classification: 05E18
Mots-clés : dynamical algebraic combinatorics, independent set, toggle group, snake group, snakes on a plane, ouroboros on a torus, torsor

Defant, Colin 1; Joseph, Michael 2; Macauley, Matthew 3; McDonough, Alex 4

1 Harvard University Department of Mathematics Cambridge MA 02139 (USA)
2 Dalton State College Department of Technology and Mathematics Dalton GA 30720 (USA)
3 Clemson University School of Mathematical and Statistical Sciences Clemson SC 29631 (USA)
4 University of Oregon Department of Mathematics Eugene OR 97403 (USA)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2024__7_6_1695_0,
     author = {Defant, Colin and Joseph, Michael and Macauley, Matthew and McDonough, Alex},
     title = {Torsors and {Tilings} from {Toric} {Toggling}},
     journal = {Algebraic Combinatorics},
     pages = {1695--1729},
     publisher = {The Combinatorics Consortium},
     volume = {7},
     number = {6},
     year = {2024},
     doi = {10.5802/alco.386},
     zbl = {07966775},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.386/}
}
TY  - JOUR
AU  - Defant, Colin
AU  - Joseph, Michael
AU  - Macauley, Matthew
AU  - McDonough, Alex
TI  - Torsors and Tilings from Toric Toggling
JO  - Algebraic Combinatorics
PY  - 2024
SP  - 1695
EP  - 1729
VL  - 7
IS  - 6
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.386/
DO  - 10.5802/alco.386
LA  - en
ID  - ALCO_2024__7_6_1695_0
ER  - 
%0 Journal Article
%A Defant, Colin
%A Joseph, Michael
%A Macauley, Matthew
%A McDonough, Alex
%T Torsors and Tilings from Toric Toggling
%J Algebraic Combinatorics
%D 2024
%P 1695-1729
%V 7
%N 6
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.386/
%R 10.5802/alco.386
%G en
%F ALCO_2024__7_6_1695_0
Defant, Colin; Joseph, Michael; Macauley, Matthew; McDonough, Alex. Torsors and Tilings from Toric Toggling. Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1695-1729. doi : 10.5802/alco.386. https://alco.centre-mersenne.org/articles/10.5802/alco.386/

[1] Brouwer, A. E.; Schrijver, A. On the period of an operator, defined on antichains, Mathematisch Centrum, Afdeling Zuivere Wiskunde, ZW 24/74, Mathematisch Centrum, Amsterdam, 1974, i+13 pages | MR

[2] Cameron, P. J.; Fon-Der-Flaass, D. G. Orbits of antichains revisited, European J. Combin., Volume 16 (1995) no. 6, pp. 545-554 | DOI | MR | Zbl

[3] David, Laurent; Defant, Colin; Joseph, Michael; Macauley, Matthew; McDonough, Alex Dynamical algebraic combinatorics, asynchronous cellular automata, and toggling independent sets, 27th IFIP WG 1.5 International Workshop on Cellular Automata and Discrete Complex Systems (OASIcs OpenAccess Ser. Inform.), Volume 90, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2021, p. Art. No. 5, 16 | DOI | MR | Zbl

[4] Defant, Colin Toric promotion, Proc. Amer. Math. Soc., Volume 151 (2023) no. 1, pp. 45-57 | DOI | MR | Zbl

[5] Defant, Colin; Joseph, Mike; Macauley, Matthew; McDonough, Alex Torsors from toggling independent sets, Sém. Lothar. Combin., Volume 86B (2022), Paper no. 85, 12 pages | MR | Zbl

[6] Develin, Mike; Macauley, Matthew; Reiner, Victor Toric partial orders, Trans. Amer. Math. Soc., Volume 368 (2016) no. 4, pp. 2263-2287 | DOI | MR | Zbl

[7] Einstein, David; Farber, Miriam; Gunawan, Emily; Joseph, Michael; Macauley, Matthew; Propp, James; Rubinstein-Salzedo, Simon Noncrossing partitions, toggles, and homomesies, Electron. J. Combin., Volume 23 (2016) no. 3, Paper no. 3.52, 26 pages | DOI | MR | Zbl

[8] Haddadan, Shahrzad Some instances of homomesy among ideals of posets, Electron. J. Combin., Volume 28 (2021) no. 1, Paper no. 1.60, 23 pages | DOI | MR | Zbl

[9] Joseph, Michael Antichain toggling and rowmotion, Electron. J. Combin., Volume 26 (2019) no. 1, Paper no. 1.29, 43 pages | DOI | MR | Zbl

[10] Joseph, Michael; Roby, Tom Toggling independent sets of a path graph, Electron. J. Combin., Volume 25 (2018) no. 1, Paper no. 1.18, 31 pages | DOI | MR | Zbl

[11] Macauley, Matthew; McCammond, Jon; Mortveit, Henning S. Order independence in asynchronous cellular automata, J. Cell. Autom., Volume 3 (2008) no. 1, pp. 37-56 | MR | Zbl

[12] Macauley, Matthew; McCammond, Jon; Mortveit, Henning S. Dynamics groups of asynchronous cellular automata, J. Algebraic Combin., Volume 33 (2011) no. 1, pp. 11-35 | DOI | MR | Zbl

[13] Numata, Yasuhide; Yamanouchi, Yuiko On the action of the toggle group of the Dynkin diagram of type A, Algebr. Comb., Volume 5 (2022) no. 1, pp. 149-161 | DOI | Numdam | MR | Zbl

[14] Panyushev, Dmitri I. On orbits of antichains of positive roots, European J. Combin., Volume 30 (2009) no. 2, pp. 586-594 | DOI | MR | Zbl

[15] Roby, Tom Dynamical algebraic combinatorics and the homomesy phenomenon, Recent trends in combinatorics (IMA Vol. Math. Appl.), Volume 159, Springer, [Cham], 2016, pp. 619-652 | DOI | MR | Zbl

[16] Striker, Jessica The toggle group, homomesy, and the Razumov-Stroganov correspondence, Electron. J. Combin., Volume 22 (2015) no. 2, Paper no. 2.57, 17 pages | DOI | MR | Zbl

[17] Striker, Jessica Dynamical algebraic combinatorics: promotion, rowmotion, and resonance, Notices Amer. Math. Soc., Volume 64 (2017) no. 6, pp. 543-549 | DOI | MR | Zbl

[18] Striker, Jessica; Williams, Nathan Promotion and rowmotion, European J. Combin., Volume 33 (2012) no. 8, pp. 1919-1942 | DOI | MR | Zbl

Cited by Sources: