We prove that the smallest elements of Shi parts and cone type parts exist and form Garside shadows. The latter resolves a conjecture of Parkinson and the second author as well as a conjecture of Hohlweg, Nadeau and Williams.
Accepted:
Published online:
DOI: 10.5802/alco.387
Mots-clés : Garside shadow, Shi-arrangement, cone types
Przytyck, Piotr 1; Yau, Yeeka 2
@article{ALCO_2024__7_6_1879_0, author = {Przytyck, Piotr and Yau, Yeeka}, title = {A pair of {Garside} shadows}, journal = {Algebraic Combinatorics}, pages = {1879--1885}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {6}, year = {2024}, doi = {10.5802/alco.387}, zbl = {07966782}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.387/} }
TY - JOUR AU - Przytyck, Piotr AU - Yau, Yeeka TI - A pair of Garside shadows JO - Algebraic Combinatorics PY - 2024 SP - 1879 EP - 1885 VL - 7 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.387/ DO - 10.5802/alco.387 LA - en ID - ALCO_2024__7_6_1879_0 ER -
Przytyck, Piotr; Yau, Yeeka. A pair of Garside shadows. Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1879-1885. doi : 10.5802/alco.387. https://alco.centre-mersenne.org/articles/10.5802/alco.387/
[1] Shi arrangements and low elements in Coxeter groups, Proc. Lond. Math. Soc. (3), Volume 129 (2024) no. 2, Paper no. e12624, 48 pages | DOI | MR | Zbl
[2] Small roots, low elements, and the weak order in Coxeter groups, Adv. Math., Volume 301 (2016), pp. 739-784 | DOI | MR | Zbl
[3] A survey of the Shi arrangement, Recent trends in algebraic combinatorics (Assoc. Women Math. Ser.), Volume 16, Springer, Cham, 2019, pp. 75-113 | DOI | MR | Zbl
[4] Automata, reduced words and Garside shadows in Coxeter groups, J. Algebra, Volume 457 (2016), pp. 431-456 | DOI | MR | Zbl
[5] Coxeter groups are biautomatic, 2022 | arXiv
[6] Cone types, automata, and regular partitions in Coxeter groups, Adv. Math., Volume 398 (2022), Paper no. 108146, 66 pages | DOI | MR | Zbl
[7] Lectures on buildings, University of Chicago Press, Chicago, IL, 2009, xiv+228 pages | MR
[8] Alcoves corresponding to an affine Weyl group, J. London Math. Soc. (2), Volume 35 (1987) no. 1, pp. 42-55 | DOI | MR | Zbl
Cited by Sources: