A pair of Garside shadows
Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1879-1885.

We prove that the smallest elements of Shi parts and cone type parts exist and form Garside shadows. The latter resolves a conjecture of Parkinson and the second author as well as a conjecture of Hohlweg, Nadeau and Williams.

Received:
Accepted:
Published online:
DOI: 10.5802/alco.387
Classification: 20F55, 20F10
Mots-clés : Garside shadow, Shi-arrangement, cone types

Przytyck, Piotr 1; Yau, Yeeka 2

1 McGill University Department of Mathematics and Statistics Burnside Hall, 805 Sherbrooke Street West, Montreal, QC, H3A 0B9, Canada
2 The University of Sydney School of Mathematics and Statistics Camperdown NSW 2050 Australia
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2024__7_6_1879_0,
     author = {Przytyck, Piotr and Yau, Yeeka},
     title = {A pair of {Garside} shadows},
     journal = {Algebraic Combinatorics},
     pages = {1879--1885},
     publisher = {The Combinatorics Consortium},
     volume = {7},
     number = {6},
     year = {2024},
     doi = {10.5802/alco.387},
     zbl = {07966782},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.387/}
}
TY  - JOUR
AU  - Przytyck, Piotr
AU  - Yau, Yeeka
TI  - A pair of Garside shadows
JO  - Algebraic Combinatorics
PY  - 2024
SP  - 1879
EP  - 1885
VL  - 7
IS  - 6
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.387/
DO  - 10.5802/alco.387
LA  - en
ID  - ALCO_2024__7_6_1879_0
ER  - 
%0 Journal Article
%A Przytyck, Piotr
%A Yau, Yeeka
%T A pair of Garside shadows
%J Algebraic Combinatorics
%D 2024
%P 1879-1885
%V 7
%N 6
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.387/
%R 10.5802/alco.387
%G en
%F ALCO_2024__7_6_1879_0
Przytyck, Piotr; Yau, Yeeka. A pair of Garside shadows. Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1879-1885. doi : 10.5802/alco.387. https://alco.centre-mersenne.org/articles/10.5802/alco.387/

[1] Dyer, Matthew; Fishel, Susanna; Hohlweg, Christophe; Mark, Alice Shi arrangements and low elements in Coxeter groups, Proc. Lond. Math. Soc. (3), Volume 129 (2024) no. 2, Paper no. e12624, 48 pages | DOI | MR | Zbl

[2] Dyer, Matthew; Hohlweg, Christophe Small roots, low elements, and the weak order in Coxeter groups, Adv. Math., Volume 301 (2016), pp. 739-784 | DOI | MR | Zbl

[3] Fishel, Susanna A survey of the Shi arrangement, Recent trends in algebraic combinatorics (Assoc. Women Math. Ser.), Volume 16, Springer, Cham, 2019, pp. 75-113 | DOI | MR | Zbl

[4] Hohlweg, Christophe; Nadeau, Philippe; Williams, Nathan Automata, reduced words and Garside shadows in Coxeter groups, J. Algebra, Volume 457 (2016), pp. 431-456 | DOI | MR | Zbl

[5] Osajda, Damian; Przytycki, Piotr Coxeter groups are biautomatic, 2022 | arXiv

[6] Parkinson, James; Yau, Yeeka Cone types, automata, and regular partitions in Coxeter groups, Adv. Math., Volume 398 (2022), Paper no. 108146, 66 pages | DOI | MR | Zbl

[7] Ronan, Mark Lectures on buildings, University of Chicago Press, Chicago, IL, 2009, xiv+228 pages | MR

[8] Shi, Jian Yi Alcoves corresponding to an affine Weyl group, J. London Math. Soc. (2), Volume 35 (1987) no. 1, pp. 42-55 | DOI | MR | Zbl

Cited by Sources: