Type A partially-symmetric Macdonald polynomials
Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1647-1694.

We construct type A partially-symmetric Macdonald polynomials P (λγ) , where λ 0 n-k is a partition and γ 0 k is a composition. These are polynomials which are symmetric in the first n-k variables, but not necessarily in the final k variables. We establish their stability and an integral form defined using Young diagram statistics. Finally, we build Pieri-type rules for degree 1 products x j P (λγ) for j>n-k and e 1 [x 1 ,,x n-k ]P (λγ) , along with substantial combinatorial simplification of the e 1 multiplication. The P (λγ) are the same as the m-symmetric Macdonald polynomials defined by Lapointe in [9] up to a change of variables.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.388
Classification: 05E05, 05E10
Mots-clés : nonsymmetric Macdonald polynomials, affine Hecke algebras, Young diagrams

Goodberry, Ben 1

1 Salisbury University Deptartment of Mathematical Sciences 1101 Camden Ave Salisbury MD 21801(USA)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2024__7_6_1647_0,
     author = {Goodberry, Ben},
     title = {Type {A} partially-symmetric {Macdonald} polynomials},
     journal = {Algebraic Combinatorics},
     pages = {1647--1694},
     publisher = {The Combinatorics Consortium},
     volume = {7},
     number = {6},
     year = {2024},
     doi = {10.5802/alco.388},
     zbl = {07966774},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.388/}
}
TY  - JOUR
AU  - Goodberry, Ben
TI  - Type A partially-symmetric Macdonald polynomials
JO  - Algebraic Combinatorics
PY  - 2024
SP  - 1647
EP  - 1694
VL  - 7
IS  - 6
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.388/
DO  - 10.5802/alco.388
LA  - en
ID  - ALCO_2024__7_6_1647_0
ER  - 
%0 Journal Article
%A Goodberry, Ben
%T Type A partially-symmetric Macdonald polynomials
%J Algebraic Combinatorics
%D 2024
%P 1647-1694
%V 7
%N 6
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.388/
%R 10.5802/alco.388
%G en
%F ALCO_2024__7_6_1647_0
Goodberry, Ben. Type A partially-symmetric Macdonald polynomials. Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1647-1694. doi : 10.5802/alco.388. https://alco.centre-mersenne.org/articles/10.5802/alco.388/

[1] Baratta, Wendy Pieri-type formulas for nonsymmetric Macdonald polynomials, Int. Math. Res. Not. IMRN (2009) no. 15, pp. 2829-2854 | DOI | MR | Zbl

[2] Carlsson, Erik; Gorsky, Eugene; Mellit, Anton The 𝔸 q,t algebra and parabolic flag Hilbert schemes, Math. Ann., Volume 376 (2020) no. 3-4, pp. 1303-1336 | DOI | MR | Zbl

[3] Goodberry, Benjamin Partially-symmetric Macdonald polynomials, Ph. D. Thesis, Virginia Tech (2022)

[4] Haglund, J.; Haiman, M.; Loehr, N. A combinatorial formula for nonsymmetric Macdonald polynomials, Amer. J. Math., Volume 130 (2008) no. 2, pp. 359-383 | DOI | MR | Zbl

[5] Halverson, Tom; Ram, Arun Monk rules for type GL n Macdonald polynomials, J. Algebra, Volume 655 (2024), pp. 493-516 | DOI | MR | Zbl

[6] Knop, Friedrich Integrality of two variable Kostka functions, J. Reine Angew. Math., Volume 482 (1997), pp. 177-189 | DOI | MR | Zbl

[7] Knop, Friedrich Symmetric and non-symmetric quantum Capelli polynomials, Comment. Math. Helv., Volume 72 (1997) no. 1, pp. 84-100 | DOI | MR | Zbl

[8] Knop, Friedrich Composition Kostka functions, Algebraic groups and homogeneous spaces (Tata Inst. Fund. Res. Stud. Math.), Volume 19, Tata Inst. Fund. Res., Mumbai, 2007, pp. 321-352 | MR | Zbl

[9] Lapointe, Luc m-Symmetric functions, non-symmetric Macdonald polynomials and positivity conjectures, 2022 | arXiv

[10] Lascoux, Alain; Rains, Eric M.; Warnaar, S. Ole Nonsymmetric interpolation Macdonald polynomials and 𝔤𝔩 n basic hypergeometric series, Transform. Groups, Volume 14 (2009) no. 3, pp. 613-647 | DOI | MR | Zbl

[11] Macdonald, I. G. Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015, xii+475 pages | MR

[12] Sahi, Siddhartha Interpolation, integrality, and a generalization of Macdonald’s polynomials, Internat. Math. Res. Notices (1996) no. 10, pp. 457-471 | DOI | MR | Zbl

[13] Schlösser, Philip Intermediate Macdonald Polynomials and Their Vector Versions, 2023 | arXiv

Cited by Sources: