We construct type A partially-symmetric Macdonald polynomials , where is a partition and is a composition. These are polynomials which are symmetric in the first variables, but not necessarily in the final variables. We establish their stability and an integral form defined using Young diagram statistics. Finally, we build Pieri-type rules for degree 1 products for and , along with substantial combinatorial simplification of the multiplication. The are the same as the -symmetric Macdonald polynomials defined by Lapointe in [9] up to a change of variables.
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.388
Mots-clés : nonsymmetric Macdonald polynomials, affine Hecke algebras, Young diagrams
Goodberry, Ben 1
@article{ALCO_2024__7_6_1647_0, author = {Goodberry, Ben}, title = {Type {A} partially-symmetric {Macdonald} polynomials}, journal = {Algebraic Combinatorics}, pages = {1647--1694}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {6}, year = {2024}, doi = {10.5802/alco.388}, zbl = {07966774}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.388/} }
TY - JOUR AU - Goodberry, Ben TI - Type A partially-symmetric Macdonald polynomials JO - Algebraic Combinatorics PY - 2024 SP - 1647 EP - 1694 VL - 7 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.388/ DO - 10.5802/alco.388 LA - en ID - ALCO_2024__7_6_1647_0 ER -
Goodberry, Ben. Type A partially-symmetric Macdonald polynomials. Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1647-1694. doi : 10.5802/alco.388. https://alco.centre-mersenne.org/articles/10.5802/alco.388/
[1] Pieri-type formulas for nonsymmetric Macdonald polynomials, Int. Math. Res. Not. IMRN (2009) no. 15, pp. 2829-2854 | DOI | MR | Zbl
[2] The algebra and parabolic flag Hilbert schemes, Math. Ann., Volume 376 (2020) no. 3-4, pp. 1303-1336 | DOI | MR | Zbl
[3] Partially-symmetric Macdonald polynomials, Ph. D. Thesis, Virginia Tech (2022)
[4] A combinatorial formula for nonsymmetric Macdonald polynomials, Amer. J. Math., Volume 130 (2008) no. 2, pp. 359-383 | DOI | MR | Zbl
[5] Monk rules for type Macdonald polynomials, J. Algebra, Volume 655 (2024), pp. 493-516 | DOI | MR | Zbl
[6] Integrality of two variable Kostka functions, J. Reine Angew. Math., Volume 482 (1997), pp. 177-189 | DOI | MR | Zbl
[7] Symmetric and non-symmetric quantum Capelli polynomials, Comment. Math. Helv., Volume 72 (1997) no. 1, pp. 84-100 | DOI | MR | Zbl
[8] Composition Kostka functions, Algebraic groups and homogeneous spaces (Tata Inst. Fund. Res. Stud. Math.), Volume 19, Tata Inst. Fund. Res., Mumbai, 2007, pp. 321-352 | MR | Zbl
[9] -Symmetric functions, non-symmetric Macdonald polynomials and positivity conjectures, 2022 | arXiv
[10] Nonsymmetric interpolation Macdonald polynomials and basic hypergeometric series, Transform. Groups, Volume 14 (2009) no. 3, pp. 613-647 | DOI | MR | Zbl
[11] Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015, xii+475 pages | MR
[12] Interpolation, integrality, and a generalization of Macdonald’s polynomials, Internat. Math. Res. Notices (1996) no. 10, pp. 457-471 | DOI | MR | Zbl
[13] Intermediate Macdonald Polynomials and Their Vector Versions, 2023 | arXiv
Cited by Sources: