We classify rank one 2-representations of , and web categories. The classification is inspired by similar results about quantum groups, given by reducing the problem to the classification of bilinear and trilinear forms, and is formulated such that it can be adapted to other web categories.
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.389
Mots-clés : Webs, 2-representations, bilinear and trilinear forms
Tubbenhauer, Daniel 1
@article{ALCO_2024__7_6_1813_0, author = {Tubbenhauer, Daniel}, title = {On rank one 2-representations of web categories}, journal = {Algebraic Combinatorics}, pages = {1813--1843}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {6}, year = {2024}, doi = {10.5802/alco.389}, zbl = {07966780}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.389/} }
TY - JOUR AU - Tubbenhauer, Daniel TI - On rank one 2-representations of web categories JO - Algebraic Combinatorics PY - 2024 SP - 1813 EP - 1843 VL - 7 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.389/ DO - 10.5802/alco.389 LA - en ID - ALCO_2024__7_6_1813_0 ER -
Tubbenhauer, Daniel. On rank one 2-representations of web categories. Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1813-1843. doi : 10.5802/alco.389. https://alco.centre-mersenne.org/articles/10.5802/alco.389/
[1] Tilting modules and cellular categories, J. Pure Appl. Algebra, Volume 224 (2020) no. 9, Paper no. 106366, 29 pages | DOI | MR
[2] Semisimplicity of Hecke and (walled) Brauer algebras, J. Aust. Math. Soc., Volume 103 (2017) no. 1, pp. 1-44 | DOI | MR | Zbl
[3] Cellular structures using -tilting modules, Pacific J. Math., Volume 292 (2018) no. 1, pp. 21-59 | DOI | MR | Zbl
[4] Diagram categories for -tilting modules at roots of unity, Transform. Groups, Volume 22 (2017) no. 1, pp. 29-89 | DOI | MR | Zbl
[5] On the functoriality of tangle homology, Algebr. Geom. Topol., Volume 23 (2023) no. 3, pp. 1303-1361 | DOI | MR | Zbl
[6] Complexity of matrix problems, Linear Algebra Appl., Volume 361 (2003), pp. 203-222 | DOI | MR | Zbl
[7] Estimation asymptotique des multiplicités dans les puissances tensorielles d’un -module, C. R. Acad. Sci. Paris Sér. I Math., Volume 316 (1993) no. 8, pp. 849-852 | MR | Zbl
[8] The representation category of the quantum group of a non-degenerate bilinear form, Comm. Algebra, Volume 31 (2003) no. 10, pp. 4831-4851 | DOI | MR | Zbl
[9] An oriented model for Khovanov homology, J. Knot Theory Ramifications, Volume 19 (2010) no. 2, pp. 291-312 | DOI | MR | Zbl
[10] Webs and quantum skew Howe duality, Math. Ann., Volume 360 (2014) no. 1-2, pp. 351-390 | DOI | MR | Zbl
[11] The invariant theory of the ternary trilinear form, Duke Math. J., Volume 5 (1939), pp. 552-566 | DOI | MR | Zbl
[12] Derived equivalences for symmetric groups and -categorification, Ann. of Math. (2), Volume 167 (2008) no. 1, pp. 245-298 | DOI | MR | Zbl
[13] Trilinear alternating forms on a vector space of dimension , Comm. Algebra, Volume 16 (1988) no. 1, pp. 1-25 | DOI | MR | Zbl
[14] Growth rates of the number of indecomposable summands in tensor powers, Algebr. Represent. Theory, Volume 27 (2024) no. 2, pp. 1033-1062 | DOI | MR | Zbl
[15] The -Schur algebra, London Mathematical Society Lecture Note Series, 253, Cambridge University Press, Cambridge, 1998, x+179 pages | DOI | MR
[16] Presentations for Temperley–Lieb algebras, Q. J. Math., Volume 72 (2021) no. 4, pp. 1253-1269 | DOI | MR | Zbl
[17] Generic -foams, web and arc algebras, 2016 | arXiv
[18] The Blanchet–Khovanov algebras, Categorification and higher representation theory (Contemp. Math.), Volume 683, Amer. Math. Soc., Providence, RI, 2017, pp. 183-226 | DOI | MR | Zbl
[19] Light ladders and clasp conjectures, 2015 | arXiv
[20] Trace decategorification of the Hecke category, J. Algebra, Volume 449 (2016), pp. 615-634 | DOI | MR | Zbl
[21] Tensor categories, Mathematical Surveys and Monographs, 205, American Mathematical Society, Providence, RI, 2015, xvi+343 pages | DOI | MR
[22] On fusion categories, Ann. of Math. (2), Volume 162 (2005) no. 2, pp. 581-642 | DOI | MR | Zbl
[23] Module categories over representations of and graphs, Math. Res. Lett., Volume 11 (2004) no. 1, pp. 103-114 | DOI | MR | Zbl
[24] Classification of module categories for , Adv. Math., Volume 384 (2021), Paper no. 107713, 63 pages | DOI | MR | Zbl
[25] Tutte chromatic identities from the Temperley–Lieb algebra, Geom. Topol., Volume 13 (2009) no. 2, pp. 709-741 | DOI | MR | Zbl
[26] Link invariants, the chromatic polynomial and the Potts model, Adv. Theor. Math. Phys., Volume 14 (2010) no. 2, pp. 507-540 | DOI | MR | Zbl
[27] Appendix: degenerate bilinear forms, J. Algebra, Volume 31 (1974), pp. 67-72 | DOI | MR | Zbl
[28] Coherence for tricategories, Mem. Amer. Math. Soc., Volume 117 (1995) no. 558, p. vi+81 | DOI | MR | Zbl
[29] On the structure of semigroups, Ann. of Math. (2), Volume 54 (1951), pp. 163-172 | DOI | MR | Zbl
[30] A canonical form for Hermitian matrices under complex orthogonal congruence, SIAM J. Matrix Anal. Appl., Volume 10 (1989) no. 2, pp. 233-243 | DOI | MR | Zbl
[31] Canonical forms for complex matrix congruence and *congruence, Linear Algebra Appl., Volume 416 (2006) no. 2-3, pp. 1010-1032 | DOI | MR | Zbl
[32] Temperley–Lieb recoupling theory and invariants of -manifolds, Annals of Mathematics Studies, 134, Princeton University Press, Princeton, NJ, 1994, x+296 pages | DOI | MR
[33] A diagrammatic approach to categorification of quantum groups. I, Represent. Theory, Volume 13 (2009), pp. 309-347 | DOI | MR | Zbl
[34] Monoidal categories, representation gap and cryptography, Trans. Amer. Math. Soc. Ser. B, Volume 11 (2024), pp. 329-395 | DOI | Zbl
[35] foams and the Khovanov homotopy type, Indiana Univ. Math. J., Volume 72 (2023) no. 2, pp. 731-755 | DOI | MR | Zbl
[36] On the ranks and border ranks of symmetric tensors, Found. Comput. Math., Volume 10 (2010) no. 3, pp. 339-366 | DOI | MR | Zbl
[37] Categories for the working mathematician, Graduate Texts in Mathematics, 5, Springer-Verlag, New York, 1998, xii+314 pages | MR
[38] Finitary birepresentations of finitary bicategories, Forum Math., Volume 33 (2021) no. 5, pp. 1261-1320 | DOI | MR | Zbl
[39] Simple transitive -representations of Soergel bimodules for finite Coxeter types, Proc. Lond. Math. Soc. (3), Volume 126 (2023) no. 5, pp. 1585-1655 | DOI | Zbl
[40] Extension of the 2-representation theory of finitary 2-categories to locally (graded) finitary 2-categories, Ark. Mat., Volume 60 (2022) no. 1, pp. 125-172 | DOI | MR | Zbl
[41] Cell -representations of finitary -categories, Compos. Math., Volume 147 (2011) no. 5, pp. 1519-1545 | DOI | MR | Zbl
[42] Transitive -representations of finitary -categories, Trans. Amer. Math. Soc., Volume 368 (2016) no. 11, pp. 7623-7644 | DOI | MR | Zbl
[43] Quantum groups of representation type, J. Noncommut. Geom., Volume 8 (2014) no. 1, pp. 107-140 | DOI | MR | Zbl
[44] Quantum automorphism groups and -deformations, J. Pure Appl. Algebra, Volume 219 (2015) no. 1, pp. 1-32 | DOI | MR | Zbl
[45] Homfly polynomial via an invariant of colored plane graphs, Enseign. Math. (2), Volume 44 (1998) no. 3-4, pp. 325-360 | MR | Zbl
[46] Classification of non-Kac compact quantum groups of type, Int. Math. Res. Not. IMRN (2016) no. 11, pp. 3356-3391 | DOI | MR | Zbl
[47] The moduli space of trilinear forms, Manuscripta Math., Volume 88 (1995) no. 1, pp. 87-107 | DOI | MR | Zbl
[48] The classification of trilinear forms, J. Korean Math. Soc., Volume 39 (2002) no. 6, pp. 821-879 | DOI | MR | Zbl
[49] The On-Line Encyclopedia of Integer Sequences, 2023 (Published electronically at http://oeis.org)
[50] Quantum ’s with classical representation theory, J. Algebra, Volume 213 (1999) no. 2, pp. 721-756 | DOI | MR | Zbl
[51] Module categories, weak Hopf algebras and modular invariants, Transform. Groups, Volume 8 (2003) no. 2, pp. 177-206 | DOI | MR | Zbl
[52] Module categories over representations of in the non-semisimple case, Geom. Funct. Anal., Volume 17 (2008) no. 6, pp. 2005-2017 | DOI | MR | Zbl
[53] A general coherence result, J. Pure Appl. Algebra, Volume 57 (1989) no. 2, pp. 165-173 | DOI | MR | Zbl
[54] The equivalence of bilinear forms, J. Algebra, Volume 31 (1974), pp. 45-66 | DOI | MR | Zbl
[55] Symmetric webs, Jones–Wenzl recursions, and -Howe duality, Int. Math. Res. Not. IMRN (2016) no. 17, pp. 5249-5290 | DOI | MR | Zbl
[56] Eine für die Valenztheorie geeignete Basis der binären Vektorinvarianten, Nachrichten von der Ges. der Wiss. Zu Göttingen. Math.-Phys. Klasse (1932), pp. 498-504 (In German) | Zbl
[57] Strictifying strong monoidal functors, MathOverflow https://mathoverflow.net/q/172816
[58] tilting modules in the mixed case, Selecta Math. (N.S.), Volume 29 (2023) no. 3, Paper no. 39, 40 pages | DOI | MR | Zbl
[59] Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem, Proc. Roy. Soc. London Ser. A, Volume 322 (1971) no. 1549, pp. 251-280 | DOI | MR | Zbl
[60] On projective equivalence of trilinear forms, Ann. of Math. (2), Volume 42 (1941), pp. 469-485 | DOI | MR | Zbl
[61] Ternary trilinear forms in the field of complex numbers, Duke Math. J., Volume 4 (1938) no. 4, pp. 678-690 | DOI | MR | Zbl
[62] Code and Erratum for On rank one 2-representations of web categories, GitHub, 2023 https://github.com/dtubbenhauer/2-representations-of-webs
[63] Sandwich cellularity and a version of cell theory, Rocky Mountain J. Math., Volume 54 (2024) no. 6, pp. 1733-1773 | DOI | MR | Zbl
[64] Quantum invariants of knots and -manifolds, De Gruyter Studies in Mathematics, 18, Walter de Gruyter & Co., Berlin, 1994, x+588 pages | DOI | MR
[65] Monoidal categories and topological field theory, Progress in Mathematics, 322, Birkhäuser/Springer, Cham, 2017, xii+523 pages | DOI | MR
[66] Invariant tensors and cellular categories, J. Algebra, Volume 321 (2009) no. 11, pp. 3563-3567 | DOI | MR | Zbl
[67] An invariant of spatial graphs, J. Graph Theory, Volume 13 (1989) no. 5, pp. 537-551 | DOI | MR | Zbl
Cited by Sources: