We consider Vinberg -groups associated to a cyclic quiver on nodes. Let be the product of the general linear groups associated to each node. Then acts naturally on and by Vinberg’s theory the polynomials are free over the invariants. We therefore consider the harmonics as a representation of , and give a combinatorial formula for the stable graded multiplicity of each -type. A key lemma provides a combinatorial separation of variables that allows us to cancel the invariants and obtain generalized exponents for the harmonics.
Accepted:
Published online:
Mots-clés : Vinberg $\theta $-group, cyclic quiver, harmonic polynomials, graded multiplicity, crystal base
Frohmader, Andrew 1; Heaton, Alexander 2
@article{ALCO_2024__7_6_1603_0, author = {Frohmader, Andrew and Heaton, Alexander}, title = {Stable graded multiplicities for harmonics on a cyclic quiver}, journal = {Algebraic Combinatorics}, pages = {1603--1614}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {6}, year = {2024}, doi = {10.5802/alco.391}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.391/} }
TY - JOUR AU - Frohmader, Andrew AU - Heaton, Alexander TI - Stable graded multiplicities for harmonics on a cyclic quiver JO - Algebraic Combinatorics PY - 2024 SP - 1603 EP - 1614 VL - 7 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.391/ DO - 10.5802/alco.391 LA - en ID - ALCO_2024__7_6_1603_0 ER -
%0 Journal Article %A Frohmader, Andrew %A Heaton, Alexander %T Stable graded multiplicities for harmonics on a cyclic quiver %J Algebraic Combinatorics %D 2024 %P 1603-1614 %V 7 %N 6 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.391/ %R 10.5802/alco.391 %G en %F ALCO_2024__7_6_1603_0
Frohmader, Andrew; Heaton, Alexander. Stable graded multiplicities for harmonics on a cyclic quiver. Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1603-1614. doi : 10.5802/alco.391. https://alco.centre-mersenne.org/articles/10.5802/alco.391/
[1] Crystal bases, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017, xii+279 pages | DOI | MR
[2] Graded Multiplicities in the Kostant-Rallis Setting, 2023 | arXiv
[3] Symmetry, representations, and invariants, Graduate Texts in Mathematics, 255, Springer, Dordrecht, 2009, xx+716 pages | DOI | MR
[4] Graded multiplicity in harmonic polynomials from the Vinberg setting, J. Lie Theory, Volume 34 (2024) no. 3, pp. 677-692 | MR | Zbl
[5] Characters of the nullcone, Math. Ann., Volume 252 (1980) no. 3, pp. 179-182 | DOI | MR | Zbl
[6] Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, 42, American Mathematical Society, Providence, RI, 2002, xviii+307 pages | DOI | MR
[7] Stable branching rules for classical symmetric pairs, Trans. Amer. Math. Soc., Volume 357 (2005) no. 4, pp. 1601-1626 | DOI | MR | Zbl
[8] The stability of graded multiplicity in the setting of the Kostant-Rallis theorem, Transform. Groups, Volume 13 (2008) no. 3-4, pp. 617-636 | DOI | MR | Zbl
[9] Flagged Littlewood-Richardson tableaux and branching rule for classical groups, J. Combin. Theory Ser. A, Volume 181 (2021), Paper no. 105419, 51 pages | DOI | MR | Zbl
[10] Composition series and intertwining operators for the spherical principal series. I, Trans. Amer. Math. Soc., Volume 229 (1977), pp. 137-173 | DOI | MR | Zbl
[11] Orbits and representations associated with symmetric spaces, Amer. J. Math., Volume 93 (1971), pp. 753-809 | DOI | MR | Zbl
[12] Lie group representations on polynomial rings, Amer. J. Math., Volume 85 (1963), pp. 327-404 | DOI | MR | Zbl
[13] Semisimple representations of quivers, Trans. Amer. Math. Soc., Volume 317 (1990) no. 2, pp. 585-598 | DOI | MR | Zbl
[14] Combinatorics of generalized exponents, Int. Math. Res. Not. IMRN (2020) no. 16, pp. 4942-4992 | DOI | MR | Zbl
[15] On invariant theory under restricted groups, Philos. Trans. Roy. Soc. London Ser. A, Volume 239 (1944), pp. 387-417 | DOI | MR | Zbl
[16] The theory of group characters and matrix representations of groups, AMS Chelsea Publishing, Providence, RI, 2006, viii+314 pages | DOI | MR
[17] Kostka-Foulkes polynomials and Macdonald spherical functions, Surveys in combinatorics, 2003 (Bangor) (London Math. Soc. Lecture Note Ser.), Volume 307, Cambridge Univ. Press, Cambridge, 2003, pp. 325-370 | DOI | MR | Zbl
[18] Rational tableaux and the tensor algebra of , J. Combin. Theory Ser. A, Volume 46 (1987) no. 1, pp. 79-120 | DOI | MR | Zbl
[19] The cubic, the quartic, and the exceptional group , Developments and retrospectives in Lie theory (Dev. Math.), Volume 38, Springer, Cham, 2014, pp. 385-397 | DOI | MR | Zbl
[20] The Weyl group of a graded Lie algebra, Izv. Akad. Nauk SSSR Ser. Mat., Volume 40 (1976) no. 3, p. 488-526, 709 | MR | Zbl
[21] On some -analogs of a theorem of Kostant-Rallis, Canad. J. Math., Volume 52 (2000) no. 2, pp. 438-448 | DOI | MR | Zbl
[22] An analogue of the Kostant-Rallis multiplicity theorem for -group harmonics, Representation theory, number theory, and invariant theory (Progr. Math.), Volume 323, Birkhäuser/Springer, Cham, 2017, pp. 603-626 | DOI | MR | Zbl
[23] Geometric invariant theory, Universitext, Springer, Cham, 2017, xiv+190 pages | DOI | MR
[24] An application of the Littlewood restriction formula to the Kostant-Rallis theorem, Trans. Amer. Math. Soc., Volume 354 (2002) no. 11, pp. 4393-4419 | DOI | MR | Zbl
Cited by Sources: