Stable graded multiplicities for harmonics on a cyclic quiver
Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1603-1614.

We consider Vinberg θ-groups associated to a cyclic quiver on k nodes. Let K be the product of the general linear groups associated to each node. Then K acts naturally on Hom(V i ,V i+1 ) and by Vinberg’s theory the polynomials are free over the invariants. We therefore consider the harmonics as a representation of K, and give a combinatorial formula for the stable graded multiplicity of each K-type. A key lemma provides a combinatorial separation of variables that allows us to cancel the invariants and obtain generalized exponents for the harmonics.

Received:
Accepted:
Published online:
DOI: 10.5802/alco.391
Classification: 22E47, 20G05, 05E10
Mots-clés : Vinberg $\theta $-group, cyclic quiver, harmonic polynomials, graded multiplicity, crystal base

Frohmader, Andrew 1; Heaton, Alexander 2

1 University of Wisconsin - Milwaukee Department of Mathematics 3200 N. Cramer St. Milwaukee WI 53211 (USA)
2 Lawrence University Department of Mathematics, Computer Science, and Statistics 711 E. John St. Appleton WI 54911 (USA)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2024__7_6_1603_0,
     author = {Frohmader, Andrew and Heaton, Alexander},
     title = {Stable graded multiplicities for harmonics on a cyclic quiver},
     journal = {Algebraic Combinatorics},
     pages = {1603--1614},
     publisher = {The Combinatorics Consortium},
     volume = {7},
     number = {6},
     year = {2024},
     doi = {10.5802/alco.391},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.391/}
}
TY  - JOUR
AU  - Frohmader, Andrew
AU  - Heaton, Alexander
TI  - Stable graded multiplicities for harmonics on a cyclic quiver
JO  - Algebraic Combinatorics
PY  - 2024
SP  - 1603
EP  - 1614
VL  - 7
IS  - 6
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.391/
DO  - 10.5802/alco.391
LA  - en
ID  - ALCO_2024__7_6_1603_0
ER  - 
%0 Journal Article
%A Frohmader, Andrew
%A Heaton, Alexander
%T Stable graded multiplicities for harmonics on a cyclic quiver
%J Algebraic Combinatorics
%D 2024
%P 1603-1614
%V 7
%N 6
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.391/
%R 10.5802/alco.391
%G en
%F ALCO_2024__7_6_1603_0
Frohmader, Andrew; Heaton, Alexander. Stable graded multiplicities for harmonics on a cyclic quiver. Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1603-1614. doi : 10.5802/alco.391. https://alco.centre-mersenne.org/articles/10.5802/alco.391/

[1] Bump, Daniel; Schilling, Anne Crystal bases, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017, xii+279 pages | DOI | MR

[2] Frohmader, Andrew Graded Multiplicities in the Kostant-Rallis Setting, 2023 | arXiv

[3] Goodman, Roe; Wallach, Nolan R. Symmetry, representations, and invariants, Graduate Texts in Mathematics, 255, Springer, Dordrecht, 2009, xx+716 pages | DOI | MR

[4] Heaton, Alexander Graded multiplicity in harmonic polynomials from the Vinberg setting, J. Lie Theory, Volume 34 (2024) no. 3, pp. 677-692 | MR | Zbl

[5] Hesselink, Wim H. Characters of the nullcone, Math. Ann., Volume 252 (1980) no. 3, pp. 179-182 | DOI | MR | Zbl

[6] Hong, Jin; Kang, Seok-Jin Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, 42, American Mathematical Society, Providence, RI, 2002, xviii+307 pages | DOI | MR

[7] Howe, Roger; Tan, Eng-Chye; Willenbring, Jeb F. Stable branching rules for classical symmetric pairs, Trans. Amer. Math. Soc., Volume 357 (2005) no. 4, pp. 1601-1626 | DOI | MR | Zbl

[8] Howe, Roger; Tan, Eng-Chye; Willenbring, Jeb F. The stability of graded multiplicity in the setting of the Kostant-Rallis theorem, Transform. Groups, Volume 13 (2008) no. 3-4, pp. 617-636 | DOI | MR | Zbl

[9] Jang, Il-Seung; Kwon, Jae-Hoon Flagged Littlewood-Richardson tableaux and branching rule for classical groups, J. Combin. Theory Ser. A, Volume 181 (2021), Paper no. 105419, 51 pages | DOI | MR | Zbl

[10] Johnson, Kenneth D.; Wallach, Nolan R. Composition series and intertwining operators for the spherical principal series. I, Trans. Amer. Math. Soc., Volume 229 (1977), pp. 137-173 | DOI | MR | Zbl

[11] Kostant, B.; Rallis, S. Orbits and representations associated with symmetric spaces, Amer. J. Math., Volume 93 (1971), pp. 753-809 | DOI | MR | Zbl

[12] Kostant, Bertram Lie group representations on polynomial rings, Amer. J. Math., Volume 85 (1963), pp. 327-404 | DOI | MR | Zbl

[13] Le Bruyn, Lieven; Procesi, Claudio Semisimple representations of quivers, Trans. Amer. Math. Soc., Volume 317 (1990) no. 2, pp. 585-598 | DOI | MR | Zbl

[14] Lecouvey, Cédric; Lenart, Cristian Combinatorics of generalized exponents, Int. Math. Res. Not. IMRN (2020) no. 16, pp. 4942-4992 | DOI | MR | Zbl

[15] Littlewood, D. E. On invariant theory under restricted groups, Philos. Trans. Roy. Soc. London Ser. A, Volume 239 (1944), pp. 387-417 | DOI | MR | Zbl

[16] Littlewood, Dudley E. The theory of group characters and matrix representations of groups, AMS Chelsea Publishing, Providence, RI, 2006, viii+314 pages | DOI | MR

[17] Nelsen, Kendra; Ram, Arun Kostka-Foulkes polynomials and Macdonald spherical functions, Surveys in combinatorics, 2003 (Bangor) (London Math. Soc. Lecture Note Ser.), Volume 307, Cambridge Univ. Press, Cambridge, 2003, pp. 325-370 | DOI | MR | Zbl

[18] Stembridge, John R. Rational tableaux and the tensor algebra of gl n , J. Combin. Theory Ser. A, Volume 46 (1987) no. 1, pp. 79-120 | DOI | MR | Zbl

[19] van Groningen, Anthony; Willenbring, Jeb F. The cubic, the quartic, and the exceptional group G 2 , Developments and retrospectives in Lie theory (Dev. Math.), Volume 38, Springer, Cham, 2014, pp. 385-397 | DOI | MR | Zbl

[20] Vinberg, È. B. The Weyl group of a graded Lie algebra, Izv. Akad. Nauk SSSR Ser. Mat., Volume 40 (1976) no. 3, p. 488-526, 709 | MR | Zbl

[21] Wallach, N. R.; Willenbring, J. On some q-analogs of a theorem of Kostant-Rallis, Canad. J. Math., Volume 52 (2000) no. 2, pp. 438-448 | DOI | MR | Zbl

[22] Wallach, Nolan R. An analogue of the Kostant-Rallis multiplicity theorem for θ-group harmonics, Representation theory, number theory, and invariant theory (Progr. Math.), Volume 323, Birkhäuser/Springer, Cham, 2017, pp. 603-626 | DOI | MR | Zbl

[23] Wallach, Nolan R. Geometric invariant theory, Universitext, Springer, Cham, 2017, xiv+190 pages | DOI | MR

[24] Willenbring, Jeb F. An application of the Littlewood restriction formula to the Kostant-Rallis theorem, Trans. Amer. Math. Soc., Volume 354 (2002) no. 11, pp. 4393-4419 | DOI | MR | Zbl

Cited by Sources: