In this paper we extend the construction of Giudici, Morgan and Zhou [8] to give the first known examples of nonregular, -closed permutation groups of rank greater than that are not the automorphism group of any digraph. We also show that this construction only gives examples for four particular primes.
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.392
Mots-clés : automorphism group, 2-closed, digraph
Bamberg, John 1; Giudici, Michael 1; Smith, Jacob P. 1
@article{ALCO_2024__7_6_1793_0, author = {Bamberg, John and Giudici, Michael and Smith, Jacob P.}, title = {New 2-closed groups that are not automorphism groups of digraphs}, journal = {Algebraic Combinatorics}, pages = {1793--1811}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {6}, year = {2024}, doi = {10.5802/alco.392}, zbl = {07966779}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.392/} }
TY - JOUR AU - Bamberg, John AU - Giudici, Michael AU - Smith, Jacob P. TI - New 2-closed groups that are not automorphism groups of digraphs JO - Algebraic Combinatorics PY - 2024 SP - 1793 EP - 1811 VL - 7 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.392/ DO - 10.5802/alco.392 LA - en ID - ALCO_2024__7_6_1793_0 ER -
%0 Journal Article %A Bamberg, John %A Giudici, Michael %A Smith, Jacob P. %T New 2-closed groups that are not automorphism groups of digraphs %J Algebraic Combinatorics %D 2024 %P 1793-1811 %V 7 %N 6 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.392/ %R 10.5802/alco.392 %G en %F ALCO_2024__7_6_1793_0
Bamberg, John; Giudici, Michael; Smith, Jacob P. New 2-closed groups that are not automorphism groups of digraphs. Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1793-1811. doi : 10.5802/alco.392. https://alco.centre-mersenne.org/articles/10.5802/alco.392/
[1] On problems concerning fixed-point-free permutations and on the polycirculant conjecture—a survey, Trans. Comb., Volume 8 (2019) no. 1, pp. 15-40 | DOI | MR | Zbl
[2] Finite digraphs with given regular automorphism groups, Period. Math. Hungar., Volume 11 (1980) no. 4, pp. 257-270 | DOI | MR | Zbl
[3] Analytic projective geometry, Cambridge University Press, Cambridge, 2023, xii+462 pages | DOI | MR
[4] Distance-regular graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 18, Springer-Verlag, Berlin, 1989, xviii+495 pages | DOI | MR
[5] Transitive permutation groups without semiregular subgroups, J. London Math. Soc. (2), Volume 66 (2002) no. 2, pp. 325-333 | DOI | MR | Zbl
[6] Research problems from the 15th British Combinatorial Conference, Discrete Math., Volume 167/168 (1997), pp. 605-615 The 15th British Combinatorial Conference (Stirling, 1995)
[7] An outline of projective geometry, North-Holland Publishing Co., New York-Amsterdam, 1981, viii+220 pages | MR
[8] On primitive 2-closed permutation groups of rank at most four, J. Combin. Theory Ser. B, Volume 158 (2023), pp. 176-205 | DOI | MR | Zbl
[9] GRRs for nonsolvable groups, Algebraic methods in graph theory, Vol. I, II (Szeged, 1978) (Colloq. Math. Soc. János Bolyai), Volume 25, North-Holland, Amsterdam-New York, 1981, pp. 221-239 | MR | Zbl
[10] Algebraic graph theory, Graduate Texts in Mathematics, 207, Springer-Verlag, New York, 2001, xx+439 pages | DOI | MR
[11] Intersection matrices for finite permutation groups, J. Algebra, Volume 6 (1967), pp. 22-42 | DOI | MR | Zbl
[12] On vertex symmetric digraphs, Discrete Math., Volume 36 (1981) no. 1, pp. 69-81 | DOI | Zbl
[13] Permutation groups through invariant relations and invariant functions, Department of Mathematics, Ohio State University, 1969
[14] Invariant relations and Aschbacher classes of finite linear groups, Electron. J. Combin., Volume 18 (2011) no. 1, Paper no. 225, 33 pages | DOI | MR | Zbl
[15] A note on permutation groups and their regular subgroups, J. Aust. Math. Soc., Volume 85 (2008) no. 2, pp. 283-287 | DOI | MR | Zbl
Cited by Sources: