New 2-closed groups that are not automorphism groups of digraphs
Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1793-1811.

In this paper we extend the construction of Giudici, Morgan and Zhou [8] to give the first known examples of nonregular, 2-closed permutation groups of rank greater than 4 that are not the automorphism group of any digraph. We also show that this construction only gives examples for four particular primes.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.392
Classification: 20B25, 05C25
Mots-clés : automorphism group, 2-closed, digraph

Bamberg, John 1; Giudici, Michael 1; Smith, Jacob P. 1

1 Centre for the Mathematics of Symmetry and Computation Department of Mathematics and Statistics The University of Western Australia 35 Stirling Highway Perth WA 6009 (Australia)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2024__7_6_1793_0,
     author = {Bamberg, John and Giudici, Michael and Smith, Jacob P.},
     title = {New 2-closed groups that are not automorphism groups of digraphs},
     journal = {Algebraic Combinatorics},
     pages = {1793--1811},
     publisher = {The Combinatorics Consortium},
     volume = {7},
     number = {6},
     year = {2024},
     doi = {10.5802/alco.392},
     zbl = {07966779},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.392/}
}
TY  - JOUR
AU  - Bamberg, John
AU  - Giudici, Michael
AU  - Smith, Jacob P.
TI  - New 2-closed groups that are not automorphism groups of digraphs
JO  - Algebraic Combinatorics
PY  - 2024
SP  - 1793
EP  - 1811
VL  - 7
IS  - 6
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.392/
DO  - 10.5802/alco.392
LA  - en
ID  - ALCO_2024__7_6_1793_0
ER  - 
%0 Journal Article
%A Bamberg, John
%A Giudici, Michael
%A Smith, Jacob P.
%T New 2-closed groups that are not automorphism groups of digraphs
%J Algebraic Combinatorics
%D 2024
%P 1793-1811
%V 7
%N 6
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.392/
%R 10.5802/alco.392
%G en
%F ALCO_2024__7_6_1793_0
Bamberg, John; Giudici, Michael; Smith, Jacob P. New 2-closed groups that are not automorphism groups of digraphs. Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1793-1811. doi : 10.5802/alco.392. https://alco.centre-mersenne.org/articles/10.5802/alco.392/

[1] Arezoomand, Majid; Abdollahi, Alireza; Spiga, Pablo On problems concerning fixed-point-free permutations and on the polycirculant conjecture—a survey, Trans. Comb., Volume 8 (2019) no. 1, pp. 15-40 | DOI | MR | Zbl

[2] Babai, L. Finite digraphs with given regular automorphism groups, Period. Math. Hungar., Volume 11 (1980) no. 4, pp. 257-270 | DOI | MR | Zbl

[3] Bamberg, John; Penttila, Tim Analytic projective geometry, Cambridge University Press, Cambridge, 2023, xii+462 pages | DOI | MR

[4] Brouwer, A. E.; Cohen, A. M.; Neumaier, A. Distance-regular graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 18, Springer-Verlag, Berlin, 1989, xviii+495 pages | DOI | MR

[5] Cameron, Peter J.; Giudici, Michael; Jones, Gareth A.; Kantor, William M.; Klin, Mikhail H.; Marušič, Dragan; Nowitz, Lewis A. Transitive permutation groups without semiregular subgroups, J. London Math. Soc. (2), Volume 66 (2002) no. 2, pp. 325-333 | DOI | MR | Zbl

[6] Cameron (ed.), Peter J. Research problems from the 15th British Combinatorial Conference, Discrete Math., Volume 167/168 (1997), pp. 605-615 The 15th British Combinatorial Conference (Stirling, 1995)

[7] Garner, Lynn E. An outline of projective geometry, North-Holland Publishing Co., New York-Amsterdam, 1981, viii+220 pages | MR

[8] Giudici, Michael; Morgan, Luke; Zhou, Jin-Xin On primitive 2-closed permutation groups of rank at most four, J. Combin. Theory Ser. B, Volume 158 (2023), pp. 176-205 | DOI | MR | Zbl

[9] Godsil, C. D. GRRs for nonsolvable groups, Algebraic methods in graph theory, Vol. I, II (Szeged, 1978) (Colloq. Math. Soc. János Bolyai), Volume 25, North-Holland, Amsterdam-New York, 1981, pp. 221-239 | MR | Zbl

[10] Godsil, Chris; Royle, Gordon Algebraic graph theory, Graduate Texts in Mathematics, 207, Springer-Verlag, New York, 2001, xx+439 pages | DOI | MR

[11] Higman, D. G. Intersection matrices for finite permutation groups, J. Algebra, Volume 6 (1967), pp. 22-42 | DOI | MR | Zbl

[12] Marušič, Dragan On vertex symmetric digraphs, Discrete Math., Volume 36 (1981) no. 1, pp. 69-81 | DOI | Zbl

[13] Wielandt, Helmut W. Permutation groups through invariant relations and invariant functions, Department of Mathematics, Ohio State University, 1969

[14] Xu, Jing; Giudici, Michael; Li, Cai Heng; Praeger, Cheryl E. Invariant relations and Aschbacher classes of finite linear groups, Electron. J. Combin., Volume 18 (2011) no. 1, Paper no. 225, 33 pages | DOI | MR | Zbl

[15] Xu, Ming-Yao A note on permutation groups and their regular subgroups, J. Aust. Math. Soc., Volume 85 (2008) no. 2, pp. 283-287 | DOI | MR | Zbl

Cited by Sources: