Elements of minimal length and Bruhat order on fixed point cosets of Coxeter groups
Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1751-1759.

We study the restriction of the strong Bruhat order on an arbitrary Coxeter group W to cosets xW L θ , where x is an element of W and W L θ the subgroup of fixed points of an automorphism θ of order at most two of a standard parabolic subgroup W L of W. When θid, there is in general more than one element of minimal length in a given coset, and we explain how to relate elements of minimal length. We also show that elements of minimal length in cosets are exactly those elements which are minimal for the restriction of the Bruhat order.

Received:
Accepted:
Published online:
DOI: 10.5802/alco.394
Classification: 20F55
Mots-clés : Coxeter groups, Bruhat order

Chapelier-Laget, Nathan 1; Gobet, Thomas 2

1 Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville Université du Littoral Côte d’Opale 50 rue Ferdinand Buisson CS 80699 62100 Calais
2 Laboratoire de Mathématiques Blaise Pascal CNRS UMR 6620 Université Clermont Auvergne Campus Universitaire des Cézeaux 3, place Vasarely TSA 60026 - CS 60026 63178 Aubière Cedex France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2024__7_6_1751_0,
     author = {Chapelier-Laget, Nathan and Gobet, Thomas},
     title = {Elements of minimal length and {Bruhat} order on fixed point cosets of {Coxeter} groups},
     journal = {Algebraic Combinatorics},
     pages = {1751--1759},
     publisher = {The Combinatorics Consortium},
     volume = {7},
     number = {6},
     year = {2024},
     doi = {10.5802/alco.394},
     zbl = {07966777},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.394/}
}
TY  - JOUR
AU  - Chapelier-Laget, Nathan
AU  - Gobet, Thomas
TI  - Elements of minimal length and Bruhat order on fixed point cosets of Coxeter groups
JO  - Algebraic Combinatorics
PY  - 2024
SP  - 1751
EP  - 1759
VL  - 7
IS  - 6
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.394/
DO  - 10.5802/alco.394
LA  - en
ID  - ALCO_2024__7_6_1751_0
ER  - 
%0 Journal Article
%A Chapelier-Laget, Nathan
%A Gobet, Thomas
%T Elements of minimal length and Bruhat order on fixed point cosets of Coxeter groups
%J Algebraic Combinatorics
%D 2024
%P 1751-1759
%V 7
%N 6
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.394/
%R 10.5802/alco.394
%G en
%F ALCO_2024__7_6_1751_0
Chapelier-Laget, Nathan; Gobet, Thomas. Elements of minimal length and Bruhat order on fixed point cosets of Coxeter groups. Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1751-1759. doi : 10.5802/alco.394. https://alco.centre-mersenne.org/articles/10.5802/alco.394/

[1] Björner, Anders; Brenti, Francesco Combinatorics of Coxeter groups, Graduate Texts in Mathematics, 231, Springer, New York, 2005, xiv+363 pages | MR

[2] Chaput, Pierre-Emmanuel; Fresse, Lucas; Gobet, Thomas Parametrization, structure and Bruhat order of certain spherical quotients, Represent. Theory, Volume 25 (2021), pp. 935-974 | DOI | MR | Zbl

[3] Deodhar, Vinay V. A note on subgroups generated by reflections in Coxeter groups, Arch. Math. (Basel), Volume 53 (1989) no. 6, pp. 543-546 | DOI | MR | Zbl

[4] Dyer, Matthew Reflection subgroups of Coxeter systems, J. Algebra, Volume 135 (1990) no. 1, pp. 57-73 | DOI | Zbl

[5] Dyer, Matthew On the “Bruhat graph” of a Coxeter system, Compositio Math., Volume 78 (1991) no. 2, pp. 185-191 | Numdam | MR | Zbl

[6] Hée, Jean-Yves Système de racines sur un anneau commutatif totalement ordonné, Geom. Dedicata, Volume 37 (1991) no. 1, pp. 65-102 | DOI | MR | Zbl

[7] Lusztig, G. Hecke algebras with unequal parameters, CRM Monograph Series, 18, American Mathematical Society, Providence, RI, 2003, vi+136 pages | DOI | MR

[8] Mühlherr, B. Coxeter groups in Coxeter groups, Finite geometry and combinatorics (Deinze, 1992) (London Math. Soc. Lecture Note Ser.), Volume 191, Cambridge Univ. Press, Cambridge, 1993, pp. 277-287 | DOI | MR | Zbl

[9] Steinberg, Robert Lectures on Chevalley groups, University Lecture Series, 66, American Mathematical Society, Providence, RI, 2016, xi+160 pages | DOI | MR

Cited by Sources: