We study the restriction of the strong Bruhat order on an arbitrary Coxeter group to cosets , where is an element of and the subgroup of fixed points of an automorphism of order at most two of a standard parabolic subgroup of . When , there is in general more than one element of minimal length in a given coset, and we explain how to relate elements of minimal length. We also show that elements of minimal length in cosets are exactly those elements which are minimal for the restriction of the Bruhat order.
Accepted:
Published online:
DOI: 10.5802/alco.394
Mots-clés : Coxeter groups, Bruhat order
Chapelier-Laget, Nathan 1; Gobet, Thomas 2
@article{ALCO_2024__7_6_1751_0, author = {Chapelier-Laget, Nathan and Gobet, Thomas}, title = {Elements of minimal length and {Bruhat} order on fixed point cosets of {Coxeter} groups}, journal = {Algebraic Combinatorics}, pages = {1751--1759}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {6}, year = {2024}, doi = {10.5802/alco.394}, zbl = {07966777}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.394/} }
TY - JOUR AU - Chapelier-Laget, Nathan AU - Gobet, Thomas TI - Elements of minimal length and Bruhat order on fixed point cosets of Coxeter groups JO - Algebraic Combinatorics PY - 2024 SP - 1751 EP - 1759 VL - 7 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.394/ DO - 10.5802/alco.394 LA - en ID - ALCO_2024__7_6_1751_0 ER -
%0 Journal Article %A Chapelier-Laget, Nathan %A Gobet, Thomas %T Elements of minimal length and Bruhat order on fixed point cosets of Coxeter groups %J Algebraic Combinatorics %D 2024 %P 1751-1759 %V 7 %N 6 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.394/ %R 10.5802/alco.394 %G en %F ALCO_2024__7_6_1751_0
Chapelier-Laget, Nathan; Gobet, Thomas. Elements of minimal length and Bruhat order on fixed point cosets of Coxeter groups. Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1751-1759. doi : 10.5802/alco.394. https://alco.centre-mersenne.org/articles/10.5802/alco.394/
[1] Combinatorics of Coxeter groups, Graduate Texts in Mathematics, 231, Springer, New York, 2005, xiv+363 pages | MR
[2] Parametrization, structure and Bruhat order of certain spherical quotients, Represent. Theory, Volume 25 (2021), pp. 935-974 | DOI | MR | Zbl
[3] A note on subgroups generated by reflections in Coxeter groups, Arch. Math. (Basel), Volume 53 (1989) no. 6, pp. 543-546 | DOI | MR | Zbl
[4] Reflection subgroups of Coxeter systems, J. Algebra, Volume 135 (1990) no. 1, pp. 57-73 | DOI | Zbl
[5] On the “Bruhat graph” of a Coxeter system, Compositio Math., Volume 78 (1991) no. 2, pp. 185-191 | Numdam | MR | Zbl
[6] Système de racines sur un anneau commutatif totalement ordonné, Geom. Dedicata, Volume 37 (1991) no. 1, pp. 65-102 | DOI | MR | Zbl
[7] Hecke algebras with unequal parameters, CRM Monograph Series, 18, American Mathematical Society, Providence, RI, 2003, vi+136 pages | DOI | MR
[8] Coxeter groups in Coxeter groups, Finite geometry and combinatorics (Deinze, 1992) (London Math. Soc. Lecture Note Ser.), Volume 191, Cambridge Univ. Press, Cambridge, 1993, pp. 277-287 | DOI | MR | Zbl
[9] Lectures on Chevalley groups, University Lecture Series, 66, American Mathematical Society, Providence, RI, 2016, xi+160 pages | DOI | MR
Cited by Sources: