We construct and study an explicit simultaneous -eigenbasis of Ion and Wu’s standard representation of the stable-limit double affine Hecke algebra for the limit Cherednik operators . This basis arises as a variant of Cherednik’s non-symmetric Macdonald polynomials of type . We utilize links between stable-limit double affine Hecke algebra theory of Ion–Wu and the double Dyck path algebra of Carlsson–Mellit that arose in their proof of the Shuffle Conjecture. As a consequence, the spectral theory for the limit Cherednik operators is understood. The symmetric functions comprise the zero weight space. We introduce one extra operator that commutes with the action and dramatically refines the weight spaces to now be one-dimensional. This operator, up to a change of variables, gives an extension of Haiman’s operator from to Additionally, we develop another method to build this weight basis using limits of trivial idempotents.
Accepted:
Published online:
DOI: 10.5802/alco.395
Mots-clés : Macdonald polynomials, double affine Hecke algebras, stable-limit
Bechtloff Weising, Milo J. 1
@article{ALCO_2024__7_6_1845_0, author = {Bechtloff Weising, Milo J.}, title = {Stable-limit non-symmetric {Macdonald} functions}, journal = {Algebraic Combinatorics}, pages = {1845--1878}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {6}, year = {2024}, doi = {10.5802/alco.395}, zbl = {07966781}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.395/} }
TY - JOUR AU - Bechtloff Weising, Milo J. TI - Stable-limit non-symmetric Macdonald functions JO - Algebraic Combinatorics PY - 2024 SP - 1845 EP - 1878 VL - 7 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.395/ DO - 10.5802/alco.395 LA - en ID - ALCO_2024__7_6_1845_0 ER -
%0 Journal Article %A Bechtloff Weising, Milo J. %T Stable-limit non-symmetric Macdonald functions %J Algebraic Combinatorics %D 2024 %P 1845-1878 %V 7 %N 6 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.395/ %R 10.5802/alco.395 %G en %F ALCO_2024__7_6_1845_0
Bechtloff Weising, Milo J. Stable-limit non-symmetric Macdonald functions. Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1845-1878. doi : 10.5802/alco.395. https://alco.centre-mersenne.org/articles/10.5802/alco.395/
[1] Stable-limit non-symmetric Macdonald functions in type A, Sém. Lothar. Combin., Volume 89B (2023), Paper no. 56, 12 pages | MR
[2] Science fiction and Macdonald’s polynomials, Algebraic methods and -special functions (Montréal, QC, 1996) (CRM Proc. Lecture Notes), Volume 22, Amer. Math. Soc., Providence, RI, 1999, pp. 1-52 | DOI | MR | Zbl
[3] Identities and positivity conjectures for some remarkable operators in the theory of symmetric functions, Methods Appl. Anal., Volume 6 (1999) no. 3, pp. 363-420 | DOI | MR | Zbl
[4] On the Hall algebra of an elliptic curve, I, Duke Math. J., Volume 161 (2012) no. 7, pp. 1171-1231 | DOI | MR | Zbl
[5] The algebra and parabolic flag Hilbert schemes, Math. Ann., Volume 376 (2020) no. 3-4, pp. 1303-1336 | DOI | MR | Zbl
[6] A proof of the shuffle conjecture, J. Amer. Math. Soc., Volume 31 (2018) no. 3, pp. 661-697 | DOI | MR | Zbl
[7] Double affine Hecke algebras and difference Fourier transforms, Invent. Math., Volume 152 (2003) no. 2, pp. 213-303 | DOI | MR | Zbl
[8] A remarkable -Catalan sequence and -Lagrange inversion, J. Algebraic Combin., Volume 5 (1996) no. 3, pp. 191-244 | DOI | MR | Zbl
[9] Partially-Symmetric Macdonald Polynomials, Ph. D. Thesis, Virginia Polytechnic Institute and State University (2022)
[10] A combinatorial formula for nonsymmetric Macdonald polynomials, Amer. J. Math., Volume 130 (2008) no. 2, pp. 359-383 | DOI | MR | Zbl
[11] A combinatorial formula for the character of the diagonal coinvariants, Duke Math. J., Volume 126 (2005) no. 2, pp. 195-232 | DOI | MR | Zbl
[12] A compositional shuffle conjecture specifying touch points of the Dyck path, Canad. J. Math., Volume 64 (2012) no. 4, pp. 822-844 | DOI | MR | Zbl
[13] Macdonald polynomials and geometry, New perspectives in algebraic combinatorics (Berkeley, CA, 1996–97) (Math. Sci. Res. Inst. Publ.), Volume 38, Cambridge Univ. Press, Cambridge, 1999, pp. 207-254 | MR | Zbl
[14] Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math., Volume 149 (2002) no. 2, pp. 371-407 | DOI | MR | Zbl
[15] Unpublished notes, 2022
[16] The stable limit DAHA and the double Dyck path algebra, J. Inst. Math. Jussieu, Volume 23 (2024) no. 1, pp. 379-424 | DOI | MR | Zbl
[17] Vertex operators and Hall-Littlewood symmetric functions, Adv. Math., Volume 87 (1991) no. 2, pp. 226-248 | DOI | MR | Zbl
[18] -Symmetric functions, non-symmetric Macdonald polynomials and positivity conjectures, 2022 | arXiv
[19] Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015, xii+475 pages | MR
[20] Alcove walks, Hecke algebras, spherical functions, crystals and column strict tableaux, Pure Appl. Math. Q., Volume 2 (2006) no. 4, pp. 963-1013 | DOI | MR | Zbl
[21] The elliptic Hall algebra and the -theory of the Hilbert scheme of , Duke Math. J., Volume 162 (2013) no. 2, pp. 279-366 | DOI | MR | Zbl
Cited by Sources: