On stability and nonvanishing of homomorphism spaces between Weyl modules
Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1761-1792.

Consider the general linear group G=GL n (K) defined over an infinite field K of positive characteristic p. We denote by Δ(λ) the Weyl module of G which corresponds to a partition λ. Let λ,μ be partitions of r and let γ be a partition with parts divisible by p. In the first main result of this paper, we find sufficient conditions on λ,μ and γ so that Hom G (Δ(λ),Δ(μ))Hom G (Δ(λ+γ),Δ(μ+γ)), thus providing an answer to a question of D. Hemmer. As corollaries we obtain stability and periodicity results for homomorphism spaces. In the second main result we find related sufficient conditions on λ,μ and p so that Hom G (Δ(λ),Δ(μ)) is nonzero. An explicit map is provided that corresponds to the sum of all semistandard tableaux of shape μ and weight λ.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.397
Classification: 20G05, 05E10
Mots-clés : Weyl modules, general linear group, homomorphism spaces, stability, nonvanishing

Evangelou, Charalambos 1; Maliakas, Mihalis 1; Stergiopoulou, Dimitra-Dionysia 1

1 University of Athens Department of Mathematics Athens Greece
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2024__7_6_1761_0,
     author = {Evangelou, Charalambos and Maliakas, Mihalis and Stergiopoulou, Dimitra-Dionysia},
     title = {On stability and nonvanishing of homomorphism spaces between {Weyl} modules},
     journal = {Algebraic Combinatorics},
     pages = {1761--1792},
     publisher = {The Combinatorics Consortium},
     volume = {7},
     number = {6},
     year = {2024},
     doi = {10.5802/alco.397},
     zbl = {07966778},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.397/}
}
TY  - JOUR
AU  - Evangelou, Charalambos
AU  - Maliakas, Mihalis
AU  - Stergiopoulou, Dimitra-Dionysia
TI  - On stability and nonvanishing of homomorphism spaces between Weyl modules
JO  - Algebraic Combinatorics
PY  - 2024
SP  - 1761
EP  - 1792
VL  - 7
IS  - 6
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.397/
DO  - 10.5802/alco.397
LA  - en
ID  - ALCO_2024__7_6_1761_0
ER  - 
%0 Journal Article
%A Evangelou, Charalambos
%A Maliakas, Mihalis
%A Stergiopoulou, Dimitra-Dionysia
%T On stability and nonvanishing of homomorphism spaces between Weyl modules
%J Algebraic Combinatorics
%D 2024
%P 1761-1792
%V 7
%N 6
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.397/
%R 10.5802/alco.397
%G en
%F ALCO_2024__7_6_1761_0
Evangelou, Charalambos; Maliakas, Mihalis; Stergiopoulou, Dimitra-Dionysia. On stability and nonvanishing of homomorphism spaces between Weyl modules. Algebraic Combinatorics, Volume 7 (2024) no. 6, pp. 1761-1792. doi : 10.5802/alco.397. https://alco.centre-mersenne.org/articles/10.5802/alco.397/

[1] Akin, Kaan; Buchsbaum, David A. Characteristic-free representation theory of the general linear group. II. Homological considerations, Adv. in Math., Volume 72 (1988) no. 2, pp. 171-210 | DOI | MR | Zbl

[2] Akin, Kaan; Buchsbaum, David A.; Weyman, Jerzy Schur functors and Schur complexes, Adv. in Math., Volume 44 (1982) no. 3, pp. 207-278 | DOI | MR | Zbl

[3] Bowman, Christopher; Giannelli, Eugenio The integral isomorphism behind row removal phenomena for Schur algebras, Math. Proc. Cambridge Philos. Soc., Volume 167 (2019) no. 2, pp. 209-228 | DOI | MR | Zbl

[4] Carter, R. W.; Payne, M. T. J. On homomorphisms between Weyl modules and Specht modules, Math. Proc. Cambridge Philos. Soc., Volume 87 (1980) no. 3, pp. 419-425 | DOI | MR | Zbl

[5] Carter, Roger W.; Lusztig, George On the modular representations of the general linear and symmetric groups, Math. Z., Volume 136 (1974), pp. 193-242 | DOI | MR | Zbl

[6] Cline, E.; Parshall, B.; Scott, L.; van der Kallen, Wilberd Rational and generic cohomology, Invent. Math., Volume 39 (1977) no. 2, pp. 143-163 | DOI | MR | Zbl

[7] Donkin, Stephen Tilting modules for algebraic groups and finite dimensional algebras, Handbook of tilting theory (London Math. Soc. Lecture Note Ser.), Volume 332, Cambridge Univ. Press, Cambridge, 2007, pp. 215-257 | DOI | MR

[8] Ellers, Harald; Murray, John Carter-Payne homomorphisms and branching rules for endomorphism rings of Specht modules, J. Group Theory, Volume 13 (2010) no. 4, pp. 477-501 | DOI | MR | Zbl

[9] Fang, Ming; Henke, Anne; Koenig, Steffen Comparing GL n -representations by characteristic-free isomorphisms between generalized Schur algebras, Forum Math., Volume 20 (2008) no. 1, pp. 45-79 | DOI | MR | Zbl

[10] Fayers, Matthew GAP4 program http://www.maths.qmul.ac.uk/~mf/homcalculator.html

[11] Fayers, Matthew; Lyle, Sinéad Row and column removal theorems for homomorphisms between Specht modules, J. Pure Appl. Algebra, Volume 185 (2003) no. 1-3, pp. 147-164 | DOI | MR | Zbl

[12] Gill, Christopher C. Young module multiplicities, decomposition numbers and the indecomposable Young permutation modules, J. Algebra Appl., Volume 13 (2014) no. 5, Paper no. 1350147, 23 pages | DOI | MR | Zbl

[13] Green, J. A. Polynomial representations of GL n , Lecture Notes in Mathematics, 830, Springer, Berlin, 2007, x+161 pages | MR

[14] Harman, Nate Stability and periodicity in the modular representation theory of symmetric groups, 2016 | arXiv

[15] Hemmer, David J. “Frobenius twists” in the representation theory of the symmetric group, Recent developments in Lie algebras, groups and representation theory (Proc. Sympos. Pure Math.), Volume 86, Amer. Math. Soc., Providence, RI, 2012, pp. 187-200 | DOI | MR | Zbl

[16] Henke, Anne On p-Kostka numbers and Young modules, European J. Combin., Volume 26 (2005) no. 6, pp. 923-942 | DOI | MR | Zbl

[17] Henke, Anne; Koenig, Steffen Relating polynomial GL (n)-representations in different degrees, J. Reine Angew. Math., Volume 551 (2002), pp. 219-235 | DOI | MR | Zbl

[18] James, G. D. The representation theory of the symmetric groups, Lecture Notes in Mathematics, 682, Springer, Berlin, 1978, v+156 pages | MR

[19] Jantzen, Jens Carsten Representations of algebraic groups, Mathematical Surveys and Monographs, 107, American Mathematical Society, Providence, RI, 2003, xiv+576 pages | MR

[20] Lam, T. Y. Young diagrams, Schur functions, the Gale-Ryser theorem and a conjecture of Snapper, J. Pure Appl. Algebra, Volume 10 (1977/78) no. 1, pp. 81-94 | DOI | MR | Zbl

[21] Maliakas, Mihalis; Stergiopoulou, Dimitra-Dionysia On homomorphisms into Weyl modules corresponding to partitions with two parts, Glasg. Math. J., Volume 65 (2023) no. 2, pp. 272-283 | DOI | MR | Zbl

[22] Maliakas, Mihalis; Stergiopoulou, Dimitra-Dionysia A periodicity theorem for extensions of Weyl modules, Math. Z., Volume 307 (2024) no. 3, Paper no. 52, 22 pages | DOI | MR | Zbl

[23] Nagpal, Rohit; Snowden, Andrew Periodicity in the cohomology of symmetric groups via divided powers, Proc. Lond. Math. Soc. (3), Volume 116 (2018) no. 5, pp. 1244-1268 | DOI | MR | Zbl

[24] Rotman, Joseph J. An introduction to homological algebra, Universitext, Springer, New York, 2009, xiv+709 pages | DOI | MR

[25] Santana, Ana Paula; Yudin, Ivan Characteristic-free resolutions of Weyl and Specht modules, Adv. Math., Volume 229 (2012) no. 4, pp. 2578-2601 | DOI | MR | Zbl

Cited by Sources: