A numerical semigroup is a cofinite subset of $\mathbb{Z}_{\ge 0}$ containing $0$ and closed under addition. Each numerical semigroup $S$ with smallest positive element $m$ corresponds to an integer point in the Kunz cone $\mathcal{C}_m \subseteq \mathbb{R}^{m-1}$, and the face of $\mathcal{C}_m$ containing that integer point determines certain algebraic properties of $S$. In this paper, we introduce the Kunz fan, a pure, polyhedral cone complex comprised of a faithful projection of certain faces of $\mathcal{C}_m$. We characterize several aspects of the Kunz fan in terms of the combinatorics of Kunz nilsemigroups, which are known to index the faces of $\mathcal{C}_m$, and our results culminate in a method of “walking” the face lattice of the Kunz cone in a manner analogous to that of a Gröbner walk. We apply our results in several contexts, including a wealth of computational data obtained from the aforementioned “walks” and a proof of a recent conjecture concerning which numerical semigroups achieve the highest minimal presentation cardinality when one fixes the smallest positive element and the number of generators.
Revised:
Accepted:
Published online:
Keywords: numerical semigroup, poset, polyhedral cone
Brower, Cole 1; McDonough, Joseph 2; O’Neill, Christopher 1

@article{ALCO_2025__8_3_597_0, author = {Brower, Cole and McDonough, Joseph and O{\textquoteright}Neill, Christopher}, title = {Numerical semigroups, polyhedra, and posets {IV:} walking the faces of the {Kunz} cone}, journal = {Algebraic Combinatorics}, pages = {597--617}, publisher = {The Combinatorics Consortium}, volume = {8}, number = {3}, year = {2025}, doi = {10.5802/alco.425}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.425/} }
TY - JOUR AU - Brower, Cole AU - McDonough, Joseph AU - O’Neill, Christopher TI - Numerical semigroups, polyhedra, and posets IV: walking the faces of the Kunz cone JO - Algebraic Combinatorics PY - 2025 SP - 597 EP - 617 VL - 8 IS - 3 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.425/ DO - 10.5802/alco.425 LA - en ID - ALCO_2025__8_3_597_0 ER -
%0 Journal Article %A Brower, Cole %A McDonough, Joseph %A O’Neill, Christopher %T Numerical semigroups, polyhedra, and posets IV: walking the faces of the Kunz cone %J Algebraic Combinatorics %D 2025 %P 597-617 %V 8 %N 3 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.425/ %R 10.5802/alco.425 %G en %F ALCO_2025__8_3_597_0
Brower, Cole; McDonough, Joseph; O’Neill, Christopher. Numerical semigroups, polyhedra, and posets IV: walking the faces of the Kunz cone. Algebraic Combinatorics, Volume 8 (2025) no. 3, pp. 597-617. doi : 10.5802/alco.425. https://alco.centre-mersenne.org/articles/10.5802/alco.425/
[1] Numerical semigroups and applications, RSME Springer Series, 3, Springer, Cham, [2020] ©2020, xiv+138 pages | DOI | MR | Zbl
[2] Numerical semigroups, polyhedra, and posets II: locating certain families of semigroups, Adv. Geom., Volume 22 (2022) no. 1, pp. 33-48 | DOI | MR | Zbl
[3] On faces of the Kunz cone and the numerical semigroups within them, 2023 | arXiv | Zbl
[4] Minimal free resolutions of numerical semigroup algebras via Apéry specialization, Pacific J. Math., Volume 334 (2025) no. 2, pp. 211-231 | DOI | MR | Zbl
[5] Wilf’s conjecture in fixed multiplicity, Internat. J. Algebra Comput., Volume 30 (2020) no. 4, pp. 861-882 | DOI | MR | Zbl
[6] The power of pyramid decomposition in Normaliz, J. Symbolic Comput., Volume 74 (2016), pp. 513-536 | DOI | MR | Zbl
[7] Bounds for syzygies of monomial curves, Proc. Amer. Math. Soc., Volume 152 (2024) no. 9, pp. 3665-3678 | DOI | MR | Zbl
[8] , a package for numerical semigroups, ACM Commun. Comput. Algebra, Volume 50 (2016) no. 1, pp. 12-24 | DOI | MR | Zbl
[9] On the cardinality of minimal presentations of numerical semigroups, Algebr. Comb., Volume 7 (2024) no. 3, pp. 753-771 | MR | Zbl
[10] Discrete optimization problem in local networks and data alignment, IEEE Transactions on Computers, Volume 100 (1987) no. 6, pp. 702-713 | DOI
[11] The generic Gröbner walk, J. Symbolic Comput., Volume 42 (2007) no. 3, pp. 298-312 | DOI | MR | Zbl
[12] Computing Gröbner fans, Math. Comp., Volume 76 (2007) no. 260, pp. 2189-2212 | DOI | MR | Zbl
[13] Numerical semigroups, polyhedra, and posets III: Minimal presentations and face dimension, Electron. J. Combin., Volume 30 (2023) no. 2, Paper no. 2.57, 25 pages | DOI | MR | Zbl
[14] The vertex ideal of a lattice, Adv. in Appl. Math., Volume 29 (2002) no. 4, pp. 521-538 | DOI | MR | Zbl
[15] Supernormal vector configurations, J. Algebraic Combin., Volume 19 (2004) no. 3, pp. 297-313 | DOI | MR | Zbl
[16] Computing Gröbner fans of toric ideals, Experiment. Math., Volume 9 (2000) no. 3, pp. 321-331 | DOI | MR | Zbl
[17] Counting numerical semigroups, Amer. Math. Monthly, Volume 124 (2017) no. 9, pp. 862-875 | DOI | MR | Zbl
[18] Numerical semigroups, polyhedra, and posets I: The group cone, Comb. Theory, Volume 1 (2021), Paper no. 19, 23 pages | DOI | MR | Zbl
[19] Über die Klassifikation numerischer Halbgruppen, Regensburger Mathematische Schriften [Regensburg Mathematical Publications], 11, Universität Regensburg, Fachbereich Mathematik, Regensburg, 1987, iv+81 pages | MR
[20] Combinatorial commutative algebra, Graduate Texts in Mathematics, 227, Springer-Verlag, New York, 2005, xiv+417 pages | MR | Zbl
[21] Open problems on relations of numerical semigroups, 2024 | arXiv | Zbl
[22] On minimal presentations of numerical monoids, Bull. Lond. Math. Soc., Volume 57 (2025) no. 3, pp. 878-894 | DOI | MR | Zbl
[23] The Smith normal form, Proceedings of the Fifth Conference of the International Linear Algebra Society (Atlanta, GA, 1995), Volume 254 (1997), pp. 367-381 | DOI | MR | Zbl
[24] Numerical semigroups with Apéry sets of unique expression, J. Algebra, Volume 226 (2000) no. 1, pp. 479-487 | DOI | MR | Zbl
[25] Finitely generated commutative monoids, Nova Science Publishers, Inc., Commack, NY, 1999, xiv+185 pages | MR | Zbl
[26] Numerical semigroups, Developments in Mathematics, 20, Springer, New York, 2009, x+181 pages | DOI | MR
[27] Systems of inequalities and numerical semigroups, J. London Math. Soc. (2), Volume 65 (2002) no. 3, pp. 611-623 | DOI | MR | Zbl
[28] Betti numbers for numerical semigroup rings, Multigraded algebra and applications (Springer Proc. Math. Stat.), Volume 238, Springer, Cham, 2018, pp. 133-157 | DOI | MR | Zbl
[29] Gröbner bases and convex polytopes, University Lecture Series, 8, American Mathematical Society, Providence, RI, 1996, xii+162 pages | DOI | MR | Zbl
[30] Variation of cost functions in integer programming, Math. Programming, Volume 77 (1997) no. 3, pp. 357-387 | DOI | MR | Zbl
[31] A circle-of-lights algorithm for the “money-changing problem”, Amer. Math. Monthly, Volume 85 (1978) no. 7, pp. 562-565 | DOI | MR | Zbl
[32] Lectures on polytopes, Graduate Texts in Mathematics, 152, Springer-Verlag, New York, 1995, x+370 pages | DOI | MR | Zbl
Cited by Sources: