Numerical semigroups, polyhedra, and posets IV: walking the faces of the Kunz cone
Algebraic Combinatorics, Volume 8 (2025) no. 3, pp. 597-617.

A numerical semigroup is a cofinite subset of $\mathbb{Z}_{\ge 0}$ containing $0$ and closed under addition. Each numerical semigroup $S$ with smallest positive element $m$ corresponds to an integer point in the Kunz cone $\mathcal{C}_m \subseteq \mathbb{R}^{m-1}$, and the face of $\mathcal{C}_m$ containing that integer point determines certain algebraic properties of $S$. In this paper, we introduce the Kunz fan, a pure, polyhedral cone complex comprised of a faithful projection of certain faces of $\mathcal{C}_m$. We characterize several aspects of the Kunz fan in terms of the combinatorics of Kunz nilsemigroups, which are known to index the faces of $\mathcal{C}_m$, and our results culminate in a method of “walking” the face lattice of the Kunz cone in a manner analogous to that of a Gröbner walk. We apply our results in several contexts, including a wealth of computational data obtained from the aforementioned “walks” and a proof of a recent conjecture concerning which numerical semigroups achieve the highest minimal presentation cardinality when one fixes the smallest positive element and the number of generators.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.425
Classification: 13D02, 20M14, 52B05, 13F65, 05E40
Keywords: numerical semigroup, poset, polyhedral cone

Brower, Cole 1; McDonough, Joseph 2; O’Neill, Christopher 1

1 Mathematics Department San Diego State University San Diego, CA 92182
2 School of Mathematics University of Minnesota Minneapolis, MN 55455
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2025__8_3_597_0,
     author = {Brower, Cole and McDonough, Joseph and O{\textquoteright}Neill, Christopher},
     title = {Numerical semigroups, polyhedra,  and posets {IV:} walking the faces  of the {Kunz} cone},
     journal = {Algebraic Combinatorics},
     pages = {597--617},
     publisher = {The Combinatorics Consortium},
     volume = {8},
     number = {3},
     year = {2025},
     doi = {10.5802/alco.425},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.425/}
}
TY  - JOUR
AU  - Brower, Cole
AU  - McDonough, Joseph
AU  - O’Neill, Christopher
TI  - Numerical semigroups, polyhedra,  and posets IV: walking the faces  of the Kunz cone
JO  - Algebraic Combinatorics
PY  - 2025
SP  - 597
EP  - 617
VL  - 8
IS  - 3
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.425/
DO  - 10.5802/alco.425
LA  - en
ID  - ALCO_2025__8_3_597_0
ER  - 
%0 Journal Article
%A Brower, Cole
%A McDonough, Joseph
%A O’Neill, Christopher
%T Numerical semigroups, polyhedra,  and posets IV: walking the faces  of the Kunz cone
%J Algebraic Combinatorics
%D 2025
%P 597-617
%V 8
%N 3
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.425/
%R 10.5802/alco.425
%G en
%F ALCO_2025__8_3_597_0
Brower, Cole; McDonough, Joseph; O’Neill, Christopher. Numerical semigroups, polyhedra,  and posets IV: walking the faces  of the Kunz cone. Algebraic Combinatorics, Volume 8 (2025) no. 3, pp. 597-617. doi : 10.5802/alco.425. https://alco.centre-mersenne.org/articles/10.5802/alco.425/

[1] Assi, Abdallah; D’Anna, Marco; García-Sánchez, Pedro A. Numerical semigroups and applications, RSME Springer Series, 3, Springer, Cham, [2020] ©2020, xiv+138 pages | DOI | MR | Zbl

[2] Autry, Jackson; Ezell, Abigail; Gomes, Tara; O’Neill, Christopher; Preuss, Christopher; Saluja, Tarang; Torres Davila, Eduardo Numerical semigroups, polyhedra, and posets II: locating certain families of semigroups, Adv. Geom., Volume 22 (2022) no. 1, pp. 33-48 | DOI | MR | Zbl

[3] Borevitz, Levi; Gomes, Tara; Ma, Jiajie; Niergarth, Harper; O’Neill, Christopher; Pocklington, Daniel; Stolk, Rosa; Wang, Jessica; Xue, Shuhang On faces of the Kunz cone and the numerical semigroups within them, 2023 | arXiv | Zbl

[4] Braun, Benjamin; Gomes, Tara; Miller, Ezra; O’Neill, Christopher; Sobieska, Aleksandra Minimal free resolutions of numerical semigroup algebras via Apéry specialization, Pacific J. Math., Volume 334 (2025) no. 2, pp. 211-231 | DOI | MR | Zbl

[5] Bruns, Winfried; García-Sánchez, Pedro; O’Neill, Christopher; Wilburne, Dane Wilf’s conjecture in fixed multiplicity, Internat. J. Algebra Comput., Volume 30 (2020) no. 4, pp. 861-882 | DOI | MR | Zbl

[6] Bruns, Winfried; Ichim, Bogdan; Söger, Christof The power of pyramid decomposition in Normaliz, J. Symbolic Comput., Volume 74 (2016), pp. 513-536 | DOI | MR | Zbl

[7] Caviglia, Giulio; Moscariello, Alessio; Sammartano, Alessio Bounds for syzygies of monomial curves, Proc. Amer. Math. Soc., Volume 152 (2024) no. 9, pp. 3665-3678 | DOI | MR | Zbl

[8] Delgado, M.; García-Sánchez, P. A. numericalsgps, a GAP package for numerical semigroups, ACM Commun. Comput. Algebra, Volume 50 (2016) no. 1, pp. 12-24 | DOI | MR | Zbl

[9] Elmacioglu, Ceyhun; Hilmer, Kieran; O’Neill, Christopher; Okandan, Melin; Park-Kaufmann, Hannah On the cardinality of minimal presentations of numerical semigroups, Algebr. Comb., Volume 7 (2024) no. 3, pp. 753-771 | MR | Zbl

[10] Fiol; Yebra; Alegre; Valero Discrete optimization problem in local networks and data alignment, IEEE Transactions on Computers, Volume 100 (1987) no. 6, pp. 702-713 | DOI

[11] Fukuda, K.; Jensen, A. N.; Lauritzen, N.; Thomas, R. The generic Gröbner walk, J. Symbolic Comput., Volume 42 (2007) no. 3, pp. 298-312 | DOI | MR | Zbl

[12] Fukuda, Komei; Jensen, Anders N.; Thomas, Rekha R. Computing Gröbner fans, Math. Comp., Volume 76 (2007) no. 260, pp. 2189-2212 | DOI | MR | Zbl

[13] Gomes, Tara; O’Neill, Christopher; Torres Davila, Eduardo Numerical semigroups, polyhedra, and posets III: Minimal presentations and face dimension, Electron. J. Combin., Volume 30 (2023) no. 2, Paper no. 2.57, 25 pages | DOI | MR | Zbl

[14] Hoşten, Serkan; Maclagan, Diane The vertex ideal of a lattice, Adv. in Appl. Math., Volume 29 (2002) no. 4, pp. 521-538 | DOI | MR | Zbl

[15] Hoşten, Serkan; Maclagan, Diane; Sturmfels, Bernd Supernormal vector configurations, J. Algebraic Combin., Volume 19 (2004) no. 3, pp. 297-313 | DOI | MR | Zbl

[16] Huber, Birkett; Thomas, Rekha R. Computing Gröbner fans of toric ideals, Experiment. Math., Volume 9 (2000) no. 3, pp. 321-331 | DOI | MR | Zbl

[17] Kaplan, Nathan Counting numerical semigroups, Amer. Math. Monthly, Volume 124 (2017) no. 9, pp. 862-875 | DOI | MR | Zbl

[18] Kaplan, Nathan; O’Neill, Christopher Numerical semigroups, polyhedra, and posets I: The group cone, Comb. Theory, Volume 1 (2021), Paper no. 19, 23 pages | DOI | MR | Zbl

[19] Kunz, Ernst Über die Klassifikation numerischer Halbgruppen, Regensburger Mathematische Schriften [Regensburg Mathematical Publications], 11, Universität Regensburg, Fachbereich Mathematik, Regensburg, 1987, iv+81 pages | MR

[20] Miller, Ezra; Sturmfels, Bernd Combinatorial commutative algebra, Graduate Texts in Mathematics, 227, Springer-Verlag, New York, 2005, xiv+417 pages | MR | Zbl

[21] Moscariello, Alessio; Sammartano, Alessio Open problems on relations of numerical semigroups, 2024 | arXiv | Zbl

[22] Moscariello, Alessio; Sammartano, Alessio On minimal presentations of numerical monoids, Bull. Lond. Math. Soc., Volume 57 (2025) no. 3, pp. 878-894 | DOI | MR | Zbl

[23] Newman, Morris The Smith normal form, Proceedings of the Fifth Conference of the International Linear Algebra Society (Atlanta, GA, 1995), Volume 254 (1997), pp. 367-381 | DOI | MR | Zbl

[24] Rosales, J. C. Numerical semigroups with Apéry sets of unique expression, J. Algebra, Volume 226 (2000) no. 1, pp. 479-487 | DOI | MR | Zbl

[25] Rosales, J. C.; García-Sánchez, P. A. Finitely generated commutative monoids, Nova Science Publishers, Inc., Commack, NY, 1999, xiv+185 pages | MR | Zbl

[26] Rosales, J. C.; García-Sánchez, P. A. Numerical semigroups, Developments in Mathematics, 20, Springer, New York, 2009, x+181 pages | DOI | MR

[27] Rosales, J. C.; García-Sánchez, P. A.; García-García, J. I.; Branco, M. B. Systems of inequalities and numerical semigroups, J. London Math. Soc. (2), Volume 65 (2002) no. 3, pp. 611-623 | DOI | MR | Zbl

[28] Stamate, Dumitru I. Betti numbers for numerical semigroup rings, Multigraded algebra and applications (Springer Proc. Math. Stat.), Volume 238, Springer, Cham, 2018, pp. 133-157 | DOI | MR | Zbl

[29] Sturmfels, Bernd Gröbner bases and convex polytopes, University Lecture Series, 8, American Mathematical Society, Providence, RI, 1996, xii+162 pages | DOI | MR | Zbl

[30] Sturmfels, Bernd; Thomas, Rekha R. Variation of cost functions in integer programming, Math. Programming, Volume 77 (1997) no. 3, pp. 357-387 | DOI | MR | Zbl

[31] Wilf, Herbert S. A circle-of-lights algorithm for the “money-changing problem”, Amer. Math. Monthly, Volume 85 (1978) no. 7, pp. 562-565 | DOI | MR | Zbl

[32] Ziegler, Günter M. Lectures on polytopes, Graduate Texts in Mathematics, 152, Springer-Verlag, New York, 1995, x+370 pages | DOI | MR | Zbl

Cited by Sources: