A quantum Murnaghan–Nakayama rule for the flag manifold
Algebraic Combinatorics, Volume 8 (2025) no. 3, pp. 619-653.

In this paper, we give a rule for the multiplication of a Schubert class by a tautological class in the (small) quantum cohomology ring of the flag manifold. As an intermediate step, we establish a formula for the multiplication of a Schubert class by a quantum Schur polynomial indexed by a hook partition. This entails a detailed analysis of chains and intervals in the quantum Bruhat order. This analysis allows us to use results of Leung–Li and of Postnikov to reduce quantum products by hook Schur polynomials to the (known) classical product.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.427
Classification: 05E05, 14N15
Keywords: Murnaghan–Nakayama rule, Schubert calculus, Schubert polynomials, quantum cohomology

Benedetti Velásquez, Carolina 1; Bergeron, Nantel 2; Colmenarejo, Laura 3; Saliola, Franco 4; Sottile, Frank 5

1 Carolina Benedetti Universidad de Los Andes Bogotá Colombia
2 Nantel Bergeron York University Toronto, Ontario Canada
3 Laura Colmenarejo North Carolina State University Raleigh, North Carolina USA
4 Franco Saliola Université du Québec à Montréal Montréal, Québec Canada
5 Frank Sottile Texas A&M University College Station, Texas USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2025__8_3_619_0,
     author = {Benedetti Vel\'asquez, Carolina and Bergeron, Nantel and Colmenarejo, Laura and Saliola, Franco and Sottile, Frank},
     title = {A quantum {Murnaghan{\textendash}Nakayama} rule for the flag manifold},
     journal = {Algebraic Combinatorics},
     pages = {619--653},
     publisher = {The Combinatorics Consortium},
     volume = {8},
     number = {3},
     year = {2025},
     doi = {10.5802/alco.427},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.427/}
}
TY  - JOUR
AU  - Benedetti Velásquez, Carolina
AU  - Bergeron, Nantel
AU  - Colmenarejo, Laura
AU  - Saliola, Franco
AU  - Sottile, Frank
TI  - A quantum Murnaghan–Nakayama rule for the flag manifold
JO  - Algebraic Combinatorics
PY  - 2025
SP  - 619
EP  - 653
VL  - 8
IS  - 3
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.427/
DO  - 10.5802/alco.427
LA  - en
ID  - ALCO_2025__8_3_619_0
ER  - 
%0 Journal Article
%A Benedetti Velásquez, Carolina
%A Bergeron, Nantel
%A Colmenarejo, Laura
%A Saliola, Franco
%A Sottile, Frank
%T A quantum Murnaghan–Nakayama rule for the flag manifold
%J Algebraic Combinatorics
%D 2025
%P 619-653
%V 8
%N 3
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.427/
%R 10.5802/alco.427
%G en
%F ALCO_2025__8_3_619_0
Benedetti Velásquez, Carolina; Bergeron, Nantel; Colmenarejo, Laura; Saliola, Franco; Sottile, Frank. A quantum Murnaghan–Nakayama rule for the flag manifold. Algebraic Combinatorics, Volume 8 (2025) no. 3, pp. 619-653. doi : 10.5802/alco.427. https://alco.centre-mersenne.org/articles/10.5802/alco.427/

[1] Assaf, Sami H.; McNamara, Peter R. W. A Pieri rule for skew shapes, J. Combin. Theory Ser. A, Volume 118 (2011) no. 1, pp. 277-290 | DOI | MR | Zbl

[2] Bandlow, Jason; Schilling, Anne; Zabrocki, Mike The Murnaghan-Nakayama rule for k-Schur functions, J. Combin. Theory Ser. A, Volume 118 (2011) no. 5, pp. 1588-1607 | DOI | MR | Zbl

[3] Benedetti, Carolina; Bergeron, Nantel Fomin-Greene monoids and Pieri operations, Algebraic monoids, group embeddings, and algebraic combinatorics (Fields Inst. Commun.), Volume 71, Springer, New York, 2014, pp. 305-338 | DOI | Zbl

[4] Benedetti, Carolina; Bergeron, Nantel; Colmenarejo, Laura; Saliola, Franco V.; Sottile, Frank A Murnaghan-Nakayama rule for quantum cohomology of the flag manifold, Sém. Lothar. Combin., Volume 89B (2023), Paper no. 37, 12 pages | MR

[5] Berg, Chris; Bergeron, Nantel; Saliola, Franco; Serrano, Luis; Zabrocki, Mike Multiplicative structures of the immaculate basis of non-commutative symmetric functions, J. Combin. Theory Ser. A, Volume 152 (2017), pp. 10-44 | DOI | MR | Zbl

[6] Bergeron, Nantel; Sottile, Frank Schubert polynomials, the Bruhat order, and the geometry of flag manifolds, Duke Math. J., Volume 95 (1998) no. 2, pp. 373-423 | DOI | MR | Zbl

[7] Bergeron, Nantel; Sottile, Frank A monoid for the Grassmannian Bruhat order, European J. Combin., Volume 20 (1999) no. 3, pp. 197-211 | DOI | MR | Zbl

[8] Bergeron, Nantel; Sottile, Frank A Pieri-type formula for isotropic flag manifolds, Trans. Amer. Math. Soc., Volume 354 (2002) no. 7, pp. 2659-2705 | DOI | MR | Zbl

[9] Bertram, Aaron Quantum Schubert calculus, Adv. Math., Volume 128 (1997) no. 2, pp. 289-305 | DOI | MR | Zbl

[10] Borel, Armand Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2), Volume 57 (1953), pp. 115-207 | DOI | MR | Zbl

[11] Buch, Anders Skovsted; Kresch, Andrew; Tamvakis, Harry Gromov-Witten invariants on Grassmannians, J. Amer. Math. Soc., Volume 16 (2003) no. 4, pp. 901-915 | DOI | MR | Zbl

[12] Fan, Neil J. Y.; Guo, Peter L.; Xiong, Rui Pieri and Murnaghan–Nakayama type rules for Chern classes of Schubert cells, 2022 | arXiv | Zbl

[13] Fomin, Sergey; Gelfand, Sergei; Postnikov, Alexander Quantum Schubert polynomials, J. Amer. Math. Soc., Volume 10 (1997) no. 3, pp. 565-596 | DOI | MR | Zbl

[14] Fomin, Sergey; Greene, Curtis Noncommutative Schur functions and their applications, Discrete Math., Volume 193 (1998) no. 1-3, pp. 179-200 | DOI | MR | Zbl

[15] Fomin, Sergey; Kirillov, Anatol N. Quadratic algebras, Dunkl elements, and Schubert calculus, Advances in geometry (Progr. Math.), Volume 172, Birkhäuser, Boston, MA, 1999, pp. 147-182 | DOI | Zbl

[16] Fulton, William Young tableaux, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997 | MR | Zbl

[17] Givental, Alexander; Kim, Bumsig Quantum cohomology of flag manifolds and Toda lattices, Comm. Math. Phys., Volume 168 (1995) no. 3, pp. 609-641 | DOI | MR | Zbl

[18] Konvalinka, Matjaž Skew quantum Murnaghan-Nakayama rule, J. Algebraic Combin., Volume 35 (2012) no. 4, pp. 519-545 | DOI | MR | Zbl

[19] Lascoux, Alain; Schützenberger, Marcel-Paul Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math., Volume 294 (1982) no. 13, pp. 447-450 | MR | Zbl

[20] Lee, Seung Jin Combinatorial description of the cohomology of the affine flag variety, Trans. Amer. Math. Soc., Volume 371 (2019) no. 6, pp. 4029-4057 | DOI | MR | Zbl

[21] Leung, Naichung Conan; Li, Changzheng Classical aspects of quantum cohomology of generalized flag varieties, Int. Math. Res. Not. IMRN (2012) no. 16, pp. 3706-3722 | DOI | MR | Zbl

[22] Macdonald, Ian Grant Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995, x+475 pages | DOI | MR | Zbl

[23] Mészáros, Karola; Panova, Greta; Postnikov, Alexander Schur times Schubert via the Fomin-Kirillov algebra, Electron. J. Combin., Volume 21 (2014) no. 1, Paper no. 1.39, 22 pages | DOI | MR | Zbl

[24] Monk, David The geometry of flag manifolds, Proc. London Math. Soc. (3), Volume 9 (1959), pp. 253-286 | DOI | MR | Zbl

[25] Morrison, Andrew A Murgnahan–Nakayama rule for Schubert polynomials, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), Discrete Math. Theor. Comput. Sci., Nancy, 2014, pp. 525-536 | MR | Zbl

[26] Morrison, Andrew; Sottile, Frank Two Murnaghan-Nakayama rules in Schubert calculus, Ann. Comb., Volume 22 (2018) no. 2, pp. 363-375 | DOI | MR | Zbl

[27] Murnaghan, Francis D. The Characters of the Symmetric Group, Amer. J. Math., Volume 59 (1937) no. 4, pp. 739-753 | DOI | MR | Zbl

[28] Nakayama, Tadashi On some modular properties of irreducible representations of a symmetric group. I, Jpn. J. Math., Volume 17 (1941), pp. 165-184 | DOI | MR | Zbl

[29] Nakayama, Tadashi On some modular properties of irreducible representations of symmetric groups. II, Jpn. J. Math., Volume 17 (1941), pp. 411-423 | DOI | MR

[30] Nguyen, Duc-Khanh A generalization of the Murnaghan-Nakayama rule for K-k-Schur and k-Schur functions, Int. Math. Res. Not. IMRN (2024) no. 6, pp. 4738-4766 | DOI | MR | Zbl

[31] Nguyen, Duc-Khanh; Hiep, Dang Tuan; Son, Tran Ha; Thuy, Do Le Hai A Murnaghan-Nakayama rule for Grothendieck polynomials of Grassmannian type, Ann. Comb., Volume 28 (2024) no. 1, pp. 155-168 | DOI | MR | Zbl

[32] Postnikov, Alexander On a quantum version of Pieri’s formula, Advances in geometry (Progr. Math.), Volume 172, Birkhäuser Boston, Boston, MA, 1999, pp. 371-383 | DOI | MR | Zbl

[33] Postnikov, Alexander Symmetries of Gromov-Witten invariants, Advances in algebraic geometry motivated by physics (Lowell, MA, 2000) (Contemp. Math.), Volume 276, Amer. Math. Soc., Providence, RI, 2001, pp. 251-258 | DOI | MR | Zbl

[34] Ross, Dustin The loop Murnaghan-Nakayama rule, J. Algebraic Combin., Volume 39 (2014) no. 1, pp. 3-15 | DOI | MR | Zbl

[35] Ross, Dustin; Zong, Zhengyu The gerby Gopakumar-Mariño-Vafa formula, Geom. Topol., Volume 17 (2013) no. 5, pp. 2935-2976 | DOI | MR | Zbl

[36] Seidel, Paul π 1 of symplectic automorphism groups and invertibles in quantum homology rings, Geom. Funct. Anal., Volume 7 (1997) no. 6, pp. 1046-1095 | DOI | MR | Zbl

[37] Sottile, Frank Pieri’s formula for flag manifolds and Schubert polynomials, Ann. Inst. Fourier (Grenoble), Volume 46 (1996) no. 1, pp. 89-110 | DOI | Numdam | MR | Zbl

[38] Tewari, Vasu A Murnaghan-Nakayama rule for noncommutative Schur functions, European J. Combin., Volume 58 (2016), pp. 118-143 | DOI | MR | Zbl

[39] Wildon, Mark A combinatorial proof of a plethystic Murnaghan-Nakayama rule, SIAM J. Discrete Math., Volume 30 (2016) no. 3, pp. 1526-1533 | DOI | MR | Zbl

Cited by Sources: