In this paper, we give a rule for the multiplication of a Schubert class by a tautological class in the (small) quantum cohomology ring of the flag manifold. As an intermediate step, we establish a formula for the multiplication of a Schubert class by a quantum Schur polynomial indexed by a hook partition. This entails a detailed analysis of chains and intervals in the quantum Bruhat order. This analysis allows us to use results of Leung–Li and of Postnikov to reduce quantum products by hook Schur polynomials to the (known) classical product.
Revised:
Accepted:
Published online:
Keywords: Murnaghan–Nakayama rule, Schubert calculus, Schubert polynomials, quantum cohomology
Benedetti Velásquez, Carolina 1; Bergeron, Nantel 2; Colmenarejo, Laura 3; Saliola, Franco 4; Sottile, Frank 5

@article{ALCO_2025__8_3_619_0, author = {Benedetti Vel\'asquez, Carolina and Bergeron, Nantel and Colmenarejo, Laura and Saliola, Franco and Sottile, Frank}, title = {A quantum {Murnaghan{\textendash}Nakayama} rule for the flag manifold}, journal = {Algebraic Combinatorics}, pages = {619--653}, publisher = {The Combinatorics Consortium}, volume = {8}, number = {3}, year = {2025}, doi = {10.5802/alco.427}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.427/} }
TY - JOUR AU - Benedetti Velásquez, Carolina AU - Bergeron, Nantel AU - Colmenarejo, Laura AU - Saliola, Franco AU - Sottile, Frank TI - A quantum Murnaghan–Nakayama rule for the flag manifold JO - Algebraic Combinatorics PY - 2025 SP - 619 EP - 653 VL - 8 IS - 3 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.427/ DO - 10.5802/alco.427 LA - en ID - ALCO_2025__8_3_619_0 ER -
%0 Journal Article %A Benedetti Velásquez, Carolina %A Bergeron, Nantel %A Colmenarejo, Laura %A Saliola, Franco %A Sottile, Frank %T A quantum Murnaghan–Nakayama rule for the flag manifold %J Algebraic Combinatorics %D 2025 %P 619-653 %V 8 %N 3 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.427/ %R 10.5802/alco.427 %G en %F ALCO_2025__8_3_619_0
Benedetti Velásquez, Carolina; Bergeron, Nantel; Colmenarejo, Laura; Saliola, Franco; Sottile, Frank. A quantum Murnaghan–Nakayama rule for the flag manifold. Algebraic Combinatorics, Volume 8 (2025) no. 3, pp. 619-653. doi : 10.5802/alco.427. https://alco.centre-mersenne.org/articles/10.5802/alco.427/
[1] A Pieri rule for skew shapes, J. Combin. Theory Ser. A, Volume 118 (2011) no. 1, pp. 277-290 | DOI | MR | Zbl
[2] The Murnaghan-Nakayama rule for -Schur functions, J. Combin. Theory Ser. A, Volume 118 (2011) no. 5, pp. 1588-1607 | DOI | MR | Zbl
[3] Fomin-Greene monoids and Pieri operations, Algebraic monoids, group embeddings, and algebraic combinatorics (Fields Inst. Commun.), Volume 71, Springer, New York, 2014, pp. 305-338 | DOI | Zbl
[4] A Murnaghan-Nakayama rule for quantum cohomology of the flag manifold, Sém. Lothar. Combin., Volume 89B (2023), Paper no. 37, 12 pages | MR
[5] Multiplicative structures of the immaculate basis of non-commutative symmetric functions, J. Combin. Theory Ser. A, Volume 152 (2017), pp. 10-44 | DOI | MR | Zbl
[6] Schubert polynomials, the Bruhat order, and the geometry of flag manifolds, Duke Math. J., Volume 95 (1998) no. 2, pp. 373-423 | DOI | MR | Zbl
[7] A monoid for the Grassmannian Bruhat order, European J. Combin., Volume 20 (1999) no. 3, pp. 197-211 | DOI | MR | Zbl
[8] A Pieri-type formula for isotropic flag manifolds, Trans. Amer. Math. Soc., Volume 354 (2002) no. 7, pp. 2659-2705 | DOI | MR | Zbl
[9] Quantum Schubert calculus, Adv. Math., Volume 128 (1997) no. 2, pp. 289-305 | DOI | MR | Zbl
[10] Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2), Volume 57 (1953), pp. 115-207 | DOI | MR | Zbl
[11] Gromov-Witten invariants on Grassmannians, J. Amer. Math. Soc., Volume 16 (2003) no. 4, pp. 901-915 | DOI | MR | Zbl
[12] Pieri and Murnaghan–Nakayama type rules for Chern classes of Schubert cells, 2022 | arXiv | Zbl
[13] Quantum Schubert polynomials, J. Amer. Math. Soc., Volume 10 (1997) no. 3, pp. 565-596 | DOI | MR | Zbl
[14] Noncommutative Schur functions and their applications, Discrete Math., Volume 193 (1998) no. 1-3, pp. 179-200 | DOI | MR | Zbl
[15] Quadratic algebras, Dunkl elements, and Schubert calculus, Advances in geometry (Progr. Math.), Volume 172, Birkhäuser, Boston, MA, 1999, pp. 147-182 | DOI | Zbl
[16] Young tableaux, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997 | MR | Zbl
[17] Quantum cohomology of flag manifolds and Toda lattices, Comm. Math. Phys., Volume 168 (1995) no. 3, pp. 609-641 | DOI | MR | Zbl
[18] Skew quantum Murnaghan-Nakayama rule, J. Algebraic Combin., Volume 35 (2012) no. 4, pp. 519-545 | DOI | MR | Zbl
[19] Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math., Volume 294 (1982) no. 13, pp. 447-450 | MR | Zbl
[20] Combinatorial description of the cohomology of the affine flag variety, Trans. Amer. Math. Soc., Volume 371 (2019) no. 6, pp. 4029-4057 | DOI | MR | Zbl
[21] Classical aspects of quantum cohomology of generalized flag varieties, Int. Math. Res. Not. IMRN (2012) no. 16, pp. 3706-3722 | DOI | MR | Zbl
[22] Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995, x+475 pages | DOI | MR | Zbl
[23] Schur times Schubert via the Fomin-Kirillov algebra, Electron. J. Combin., Volume 21 (2014) no. 1, Paper no. 1.39, 22 pages | DOI | MR | Zbl
[24] The geometry of flag manifolds, Proc. London Math. Soc. (3), Volume 9 (1959), pp. 253-286 | DOI | MR | Zbl
[25] A Murgnahan–Nakayama rule for Schubert polynomials, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), Discrete Math. Theor. Comput. Sci., Nancy, 2014, pp. 525-536 | MR | Zbl
[26] Two Murnaghan-Nakayama rules in Schubert calculus, Ann. Comb., Volume 22 (2018) no. 2, pp. 363-375 | DOI | MR | Zbl
[27] The Characters of the Symmetric Group, Amer. J. Math., Volume 59 (1937) no. 4, pp. 739-753 | DOI | MR | Zbl
[28] On some modular properties of irreducible representations of a symmetric group. I, Jpn. J. Math., Volume 17 (1941), pp. 165-184 | DOI | MR | Zbl
[29] On some modular properties of irreducible representations of symmetric groups. II, Jpn. J. Math., Volume 17 (1941), pp. 411-423 | DOI | MR
[30] A generalization of the Murnaghan-Nakayama rule for --Schur and -Schur functions, Int. Math. Res. Not. IMRN (2024) no. 6, pp. 4738-4766 | DOI | MR | Zbl
[31] A Murnaghan-Nakayama rule for Grothendieck polynomials of Grassmannian type, Ann. Comb., Volume 28 (2024) no. 1, pp. 155-168 | DOI | MR | Zbl
[32] On a quantum version of Pieri’s formula, Advances in geometry (Progr. Math.), Volume 172, Birkhäuser Boston, Boston, MA, 1999, pp. 371-383 | DOI | MR | Zbl
[33] Symmetries of Gromov-Witten invariants, Advances in algebraic geometry motivated by physics (Lowell, MA, 2000) (Contemp. Math.), Volume 276, Amer. Math. Soc., Providence, RI, 2001, pp. 251-258 | DOI | MR | Zbl
[34] The loop Murnaghan-Nakayama rule, J. Algebraic Combin., Volume 39 (2014) no. 1, pp. 3-15 | DOI | MR | Zbl
[35] The gerby Gopakumar-Mariño-Vafa formula, Geom. Topol., Volume 17 (2013) no. 5, pp. 2935-2976 | DOI | MR | Zbl
[36] of symplectic automorphism groups and invertibles in quantum homology rings, Geom. Funct. Anal., Volume 7 (1997) no. 6, pp. 1046-1095 | DOI | MR | Zbl
[37] Pieri’s formula for flag manifolds and Schubert polynomials, Ann. Inst. Fourier (Grenoble), Volume 46 (1996) no. 1, pp. 89-110 | DOI | Numdam | MR | Zbl
[38] A Murnaghan-Nakayama rule for noncommutative Schur functions, European J. Combin., Volume 58 (2016), pp. 118-143 | DOI | MR | Zbl
[39] A combinatorial proof of a plethystic Murnaghan-Nakayama rule, SIAM J. Discrete Math., Volume 30 (2016) no. 3, pp. 1526-1533 | DOI | MR | Zbl
Cited by Sources: