Generalised hook lengths and Schur elements for Hecke algebras
Algebraic Combinatorics, Volume 8 (2025) no. 4, pp. 1069-1084.

We compare two generalisations of the notion of hook lengths for partitions. We apply this in the context of the modular representation theory of Arike–Koike algebras. We show that the Schur element of a simple module is divisible by the Schur element of the associated (generalised) core. In the case of Hecke algebras of type $A$, we obtain an even stronger result: the Schur element of a simple module is equal to the product of the Schur element of its core and the Schur element of its quotient.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.438
Classification: 05E10, 20C08, 20C20
Keywords: hook lengths, Schur elements, Hecke algebras

Chlouveraki, Maria 1; Gramain, Jean-Baptiste 2; Jacon, Nicolas 3

1 National and Kapodistrian University of Athens Department of Mathematics Panepistimioupolis 15784 Athens Greece
2 Institute of Mathematics University of Aberdeen King’s College Fraser Noble Building Aberdeen AB24 3UE UK
3 Université de Reims Champagne-Ardennes UFR Sciences exactes et naturelles Laboratoire de Mathématiques UMR CNRS 9008 Moulin de la Housse BP 1039 51100 REIMS France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2025__8_4_1069_0,
     author = {Chlouveraki, Maria and Gramain, Jean-Baptiste and Jacon, Nicolas},
     title = {Generalised hook lengths and {Schur} elements for {Hecke} algebras},
     journal = {Algebraic Combinatorics},
     pages = {1069--1084},
     publisher = {The Combinatorics Consortium},
     volume = {8},
     number = {4},
     year = {2025},
     doi = {10.5802/alco.438},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.438/}
}
TY  - JOUR
AU  - Chlouveraki, Maria
AU  - Gramain, Jean-Baptiste
AU  - Jacon, Nicolas
TI  - Generalised hook lengths and Schur elements for Hecke algebras
JO  - Algebraic Combinatorics
PY  - 2025
SP  - 1069
EP  - 1084
VL  - 8
IS  - 4
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.438/
DO  - 10.5802/alco.438
LA  - en
ID  - ALCO_2025__8_4_1069_0
ER  - 
%0 Journal Article
%A Chlouveraki, Maria
%A Gramain, Jean-Baptiste
%A Jacon, Nicolas
%T Generalised hook lengths and Schur elements for Hecke algebras
%J Algebraic Combinatorics
%D 2025
%P 1069-1084
%V 8
%N 4
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.438/
%R 10.5802/alco.438
%G en
%F ALCO_2025__8_4_1069_0
Chlouveraki, Maria; Gramain, Jean-Baptiste; Jacon, Nicolas. Generalised hook lengths and Schur elements for Hecke algebras. Algebraic Combinatorics, Volume 8 (2025) no. 4, pp. 1069-1084. doi : 10.5802/alco.438. https://alco.centre-mersenne.org/articles/10.5802/alco.438/

[1] Ariki, Susumu On the semi-simplicity of the Hecke algebra of (Z/rZ)S n , J. Algebra, Volume 169 (1994) no. 1, pp. 216-225 | DOI | MR | Zbl

[2] Ariki, Susumu; Koike, Kazuhiko A Hecke algebra of (Z/rZ)S n and construction of its irreducible representations, Adv. Math., Volume 106 (1994) no. 2, pp. 216-243 | DOI | MR | Zbl

[3] Bessenrodt, Christine; Gramain, Jean-Baptiste; Olsson, Jørn B. Generalized hook lengths in symbols and partitions, J. Algebraic Combin., Volume 36 (2012) no. 2, pp. 309-332 | DOI | MR | Zbl

[4] Brauer, Richard; Robinson, Gilbert de Beauregard On a conjecture by Nakayama, Trans. Roy. Soc. Canada Sect. III, Volume 41 (1947), pp. 11-19 | MR

[5] Bremke, Kirsten; Malle, Gunter Reduced words and a length function for G(e,1,n), Indag. Math. (N.S.), Volume 8 (1997) no. 4, pp. 453-469 | DOI | MR | Zbl

[6] Broué, Michel; Malle, Gunter; Michel, Jean Towards spetses. I, Transform. Groups, Volume 4 (1999) no. 2-3, pp. 157-218 | DOI | MR | Zbl

[7] Chlouveraki, Maria; Jacon, Nicolas Schur elements for the Ariki-Koike algebra and applications, J. Algebraic Combin., Volume 35 (2012) no. 2, pp. 291-311 | DOI | MR | Zbl

[8] Chlouveraki, Maria; Jacon, Nicolas Defect in cyclotomic Hecke algebras, Math. Z., Volume 305 (2023) no. 4, Paper no. 57, 33 pages | DOI | MR | Zbl

[9] Dipper, Richard; Mathas, Andrew Morita equivalences of Ariki-Koike algebras, Math. Z., Volume 240 (2002) no. 3, pp. 579-610 | DOI | MR | Zbl

[10] Geck, Meinolf; Iancu, Lacrimioara; Malle, Gunter Weights of Markov traces and generic degrees, Indag. Math. (N.S.), Volume 11 (2000) no. 3, pp. 379-397 | DOI | MR | Zbl

[11] Geck, Meinolf; Jacon, Nicolas Representations of Hecke algebras at roots of unity, Algebra and Applications, 15, Springer-Verlag London, Ltd., London, 2011, xii+401 pages | DOI | MR | Zbl

[12] Geck, Meinolf; Pfeiffer, Götz On the irreducible characters of Hecke algebras, Adv. Math., Volume 102 (1993) no. 1, pp. 79-94 | DOI | MR | Zbl

[13] Geck, Meinolf; Rouquier, Raphaël Centers and simple modules for Iwahori-Hecke algebras, Finite reductive groups (Luminy, 1994) (Progr. Math.), Volume 141, Birkhäuser Boston, Boston, MA, 1997, pp. 251-272 | MR | Zbl

[14] Gramain, Jean-Baptiste; Nath, Rishi On core and bar-core partitions, Ramanujan J., Volume 27 (2012) no. 2, pp. 229-233 | DOI | MR | Zbl

[15] Jacon, Nicolas; Lecouvey, Cédric Cores of Ariki-Koike algebras, Doc. Math., Volume 26 (2021), pp. 103-124 | DOI | MR | Zbl

[16] Malle, Gunter Unipotente Grade imprimitiver komplexer Spiegelungsgruppen, J. Algebra, Volume 177 (1995) no. 3, pp. 768-826 | DOI | MR | Zbl

[17] Malle, Gunter; Mathas, Andrew Symmetric cyclotomic Hecke algebras, J. Algebra, Volume 205 (1998) no. 1, pp. 275-293 | DOI | MR | Zbl

[18] Malle, Gunter; Navarro, Gabriel Blocks with equal height zero degrees, Trans. Amer. Math. Soc., Volume 363 (2011) no. 12, pp. 6647-6669 | DOI | MR | Zbl

[19] Mathas, Andrew Matrix units and generic degrees for the Ariki-Koike algebras, J. Algebra, Volume 281 (2004) no. 2, pp. 695-730 | DOI | MR | Zbl

[20] Olsson, Jørn B. A theorem on the cores of partitions, J. Combin. Theory Ser. A, Volume 116 (2009) no. 3, pp. 733-740 | DOI | MR | Zbl

[21] Rostam, Salim Cyclotomic quiver Hecke algebras and Hecke algebra of G(r,p,n), Trans. Amer. Math. Soc., Volume 371 (2019) no. 6, pp. 3877-3916 | DOI | MR | Zbl

Cited by Sources: