We point out to a connection of an old approach of Gondran and Minoux to ranks of matrices over the algebra $(\mathbb{R},\max ,+)$ and a recent work of Brandenburg, Loho, and Sinn on positive tropicalizations of algebraic varieties. This leads to examples of tropical varieties and their tropical bases which are not the corresponding positive tropical generating sets. In particular, we show that the $d\times d$ minors of a $d\times n$ matrix of variables form a positive tropical generating set if and only if either (1) $d=n$ or (2) $d\leqslant 4$.
Revised:
Accepted:
Published online:
Keywords: Gondran–Minoux rank, tropical varieties
CC-BY 4.0
@article{ALCO_2025__8_5_1349_0,
author = {Shitov, Yaroslav},
title = {Positive tropicalizations of determinantal varieties and the {Gondran{\textendash}Minoux} rank},
journal = {Algebraic Combinatorics},
pages = {1349--1352},
year = {2025},
publisher = {The Combinatorics Consortium},
volume = {8},
number = {5},
doi = {10.5802/alco.440},
language = {en},
url = {https://alco.centre-mersenne.org/articles/10.5802/alco.440/}
}
TY - JOUR AU - Shitov, Yaroslav TI - Positive tropicalizations of determinantal varieties and the Gondran–Minoux rank JO - Algebraic Combinatorics PY - 2025 SP - 1349 EP - 1352 VL - 8 IS - 5 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.440/ DO - 10.5802/alco.440 LA - en ID - ALCO_2025__8_5_1349_0 ER -
%0 Journal Article %A Shitov, Yaroslav %T Positive tropicalizations of determinantal varieties and the Gondran–Minoux rank %J Algebraic Combinatorics %D 2025 %P 1349-1352 %V 8 %N 5 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.440/ %R 10.5802/alco.440 %G en %F ALCO_2025__8_5_1349_0
Shitov, Yaroslav. Positive tropicalizations of determinantal varieties and the Gondran–Minoux rank. Algebraic Combinatorics, Volume 8 (2025) no. 5, pp. 1349-1352. doi: 10.5802/alco.440
[1] Real and Positive Tropicalizations of Symmetric Determinantal Varieties, 2024 | arXiv | Zbl
[2] Linear independence over tropical semirings and beyond, Tropical and idempotent mathematics (Contemp. Math.), Volume 495, Amer. Math. Soc., Providence, RI, 2009, pp. 1-38 | DOI | MR | Zbl
[3] Tropical positivity and determinantal varieties, Algebr. Comb., Volume 6 (2023) no. 4, pp. 999-1040 | DOI | MR | Numdam | Zbl
[4] Corrigendum to “Tropical Positivity and Determinantal Varieties”, Algebraic Combinatorics, Volume 7 (2024) no. 3, pp. 749-751 | DOI | Zbl | MR
[5] The minors of a matrix are a tropical basis, Linear Algebra Appl., Volume 435 (2011) no. 7, pp. 1598-1611 | DOI | MR | Zbl
[6] On the rank of a tropical matrix, Combinatorial and computational geometry (Math. Sci. Res. Inst. Publ.), Volume 52, Cambridge Univ. Press, Cambridge, 2005, pp. 213-242 | MR | DOI | Zbl
[7] Linear Algebra in Dioids: A Survey of Recent Results, Algebraic and Combinatorial Methods in Operations Research (Burkard, R. E.; Cuninghame-Green, R. A.; Zimmermann, U., eds.) (North-Holland Mathematics Studies), Volume 95, North-Holland, 1984, pp. 147-163 | DOI | Zbl
[8] Matrices with different Gondran–Minoux and determinantal ranks over max-algebras, Journal of Mathematical Sciences, Volume 163 (2009) no. 5, pp. 598-624 | DOI | Zbl
[9] When do the -by- minors of a matrix form a tropical basis?, J. Combin. Theory Ser. A, Volume 120 (2013) no. 6, pp. 1166-1201 | DOI | MR | Zbl
[10] Real radical initial ideals, J. Algebra, Volume 352 (2012), pp. 392-407 | DOI | MR | Zbl
Cited by Sources: