Positive tropicalizations of determinantal varieties and the Gondran–Minoux rank
Algebraic Combinatorics, Volume 8 (2025) no. 5, pp. 1349-1352

We point out to a connection of an old approach of Gondran and Minoux to ranks of matrices over the algebra $(\mathbb{R},\max ,+)$ and a recent work of Brandenburg, Loho, and Sinn on positive tropicalizations of algebraic varieties. This leads to examples of tropical varieties and their tropical bases which are not the corresponding positive tropical generating sets. In particular, we show that the $d\times d$ minors of a $d\times n$ matrix of variables form a positive tropical generating set if and only if either (1) $d=n$ or (2) $d\leqslant 4$.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.440
Classification: 14P05, 15A03
Keywords: Gondran–Minoux rank, tropical varieties
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2025__8_5_1349_0,
     author = {Shitov, Yaroslav},
     title = {Positive tropicalizations of determinantal varieties and the {Gondran{\textendash}Minoux} rank},
     journal = {Algebraic Combinatorics},
     pages = {1349--1352},
     year = {2025},
     publisher = {The Combinatorics Consortium},
     volume = {8},
     number = {5},
     doi = {10.5802/alco.440},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.440/}
}
TY  - JOUR
AU  - Shitov, Yaroslav
TI  - Positive tropicalizations of determinantal varieties and the Gondran–Minoux rank
JO  - Algebraic Combinatorics
PY  - 2025
SP  - 1349
EP  - 1352
VL  - 8
IS  - 5
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.440/
DO  - 10.5802/alco.440
LA  - en
ID  - ALCO_2025__8_5_1349_0
ER  - 
%0 Journal Article
%A Shitov, Yaroslav
%T Positive tropicalizations of determinantal varieties and the Gondran–Minoux rank
%J Algebraic Combinatorics
%D 2025
%P 1349-1352
%V 8
%N 5
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.440/
%R 10.5802/alco.440
%G en
%F ALCO_2025__8_5_1349_0
Shitov, Yaroslav. Positive tropicalizations of determinantal varieties and the Gondran–Minoux rank. Algebraic Combinatorics, Volume 8 (2025) no. 5, pp. 1349-1352. doi: 10.5802/alco.440

[1] Ahmadieh, Abeer Al; Cai, May; Yu, Josephine Real and Positive Tropicalizations of Symmetric Determinantal Varieties, 2024 | arXiv | Zbl

[2] Akian, Marianne; Gaubert, Stéphane; Guterman, Alexander Linear independence over tropical semirings and beyond, Tropical and idempotent mathematics (Contemp. Math.), Volume 495, Amer. Math. Soc., Providence, RI, 2009, pp. 1-38 | DOI | MR | Zbl

[3] Brandenburg, Marie-Charlotte; Loho, Georg; Sinn, Rainer Tropical positivity and determinantal varieties, Algebr. Comb., Volume 6 (2023) no. 4, pp. 999-1040 | DOI | MR | Numdam | Zbl

[4] Brandenburg, Marie-Charlotte; Loho, Georg; Sinn, Rainer Corrigendum to “Tropical Positivity and Determinantal Varieties”, Algebraic Combinatorics, Volume 7 (2024) no. 3, pp. 749-751 | DOI | Zbl | MR

[5] Chan, Melody; Jensen, Anders; Rubei, Elena The 4×4 minors of a 5×n matrix are a tropical basis, Linear Algebra Appl., Volume 435 (2011) no. 7, pp. 1598-1611 | DOI | MR | Zbl

[6] Develin, Mike; Santos, Francisco; Sturmfels, Bernd On the rank of a tropical matrix, Combinatorial and computational geometry (Math. Sci. Res. Inst. Publ.), Volume 52, Cambridge Univ. Press, Cambridge, 2005, pp. 213-242 | MR | DOI | Zbl

[7] Gondran, M.; Minoux, M. Linear Algebra in Dioids: A Survey of Recent Results, Algebraic and Combinatorial Methods in Operations Research (Burkard, R. E.; Cuninghame-Green, R. A.; Zimmermann, U., eds.) (North-Holland Mathematics Studies), Volume 95, North-Holland, 1984, pp. 147-163 | DOI | Zbl

[8] Shitov, Ya. N. Matrices with different Gondran–Minoux and determinantal ranks over max-algebras, Journal of Mathematical Sciences, Volume 163 (2009) no. 5, pp. 598-624 | DOI | Zbl

[9] Shitov, Yaroslav When do the r-by-r minors of a matrix form a tropical basis?, J. Combin. Theory Ser. A, Volume 120 (2013) no. 6, pp. 1166-1201 | DOI | MR | Zbl

[10] Vinzant, Cynthia Real radical initial ideals, J. Algebra, Volume 352 (2012), pp. 392-407 | DOI | MR | Zbl

Cited by Sources: