More on the corner-vector construction for spherical designs
Algebraic Combinatorics, Volume 8 (2025) no. 5, pp. 1387-1414

This paper explores a full generalization of the classical corner-vector method for constructing weighted spherical designs, which we call the generalized corner-vector method. First we establish a uniform upper bound for the degree of designs obtained from the proposed method. Our proof is a hybrid argument that employs techniques in analysis and combinatorics, especially a famous result by Xu (1998) on the interrelation between spherical designs and simplicial designs, and the cross-ratio comparison method for Hilbert identities introduced by Nozaki and Sawa (2013). We extensively study conditions for the existence of designs obtained from our method, and present many curious examples of degree $7$ through $13$, some of which are, to our surprise, characterized in terms of integral lattices.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.441
Classification: 05E99, 65D32, 11E76
Keywords: Cubature formula, explicit construction, Hilbert identity, integral lattice, simplicial design, spherical design

Tanino, Kenji 1; Tamaru, Tomoki 1; Hirao, Masatake 2; Sawa, Masanori 1

1 Graduate School of System Informatics Kobe University 1-1 Riokkodai Nada Kobe Hyogo 657-8501 Japan
2 School of Information and Science Technology Aichi Prefectural University 1522-3 Ibaragabasama Nagakute Aichi 480-1198 Japan
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2025__8_5_1387_0,
     author = {Tanino, Kenji and Tamaru, Tomoki and Hirao, Masatake and Sawa, Masanori},
     title = {More on the corner-vector construction for spherical designs},
     journal = {Algebraic Combinatorics},
     pages = {1387--1414},
     year = {2025},
     publisher = {The Combinatorics Consortium},
     volume = {8},
     number = {5},
     doi = {10.5802/alco.441},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.441/}
}
TY  - JOUR
AU  - Tanino, Kenji
AU  - Tamaru, Tomoki
AU  - Hirao, Masatake
AU  - Sawa, Masanori
TI  - More on the corner-vector construction for spherical designs
JO  - Algebraic Combinatorics
PY  - 2025
SP  - 1387
EP  - 1414
VL  - 8
IS  - 5
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.441/
DO  - 10.5802/alco.441
LA  - en
ID  - ALCO_2025__8_5_1387_0
ER  - 
%0 Journal Article
%A Tanino, Kenji
%A Tamaru, Tomoki
%A Hirao, Masatake
%A Sawa, Masanori
%T More on the corner-vector construction for spherical designs
%J Algebraic Combinatorics
%D 2025
%P 1387-1414
%V 8
%N 5
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.441/
%R 10.5802/alco.441
%G en
%F ALCO_2025__8_5_1387_0
Tanino, Kenji; Tamaru, Tomoki; Hirao, Masatake; Sawa, Masanori. More on the corner-vector construction for spherical designs. Algebraic Combinatorics, Volume 8 (2025) no. 5, pp. 1387-1414. doi: 10.5802/alco.441

[1] Bajnok, Bela Construction of spherical t-designs, Geom. Dedicata, Volume 43 (1992) no. 2, pp. 167-179 | DOI | MR | Zbl

[2] Bajnok, Béla Orbits of the hyperoctahedral group as Euclidean designs, J. Algebraic Combin., Volume 25 (2007) no. 4, pp. 375-397 | DOI | MR | Zbl

[3] Bannai, Eiichi; Bannai, Etsuko A survey on spherical designs and algebraic combinatorics on spheres, European J. Combin., Volume 30 (2009) no. 6, pp. 1392-1425 | DOI | MR | Zbl

[4] Bondarenko, Andriy; Radchenko, Danylo; Viazovska, Maryna Optimal asymptotic bounds for spherical designs, Ann. of Math. (2), Volume 178 (2013) no. 2, pp. 443-452 | DOI | MR | Zbl

[5] Conway, J. H.; Sloane, N. J. A. Sphere packings, lattices and groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 290, Springer-Verlag, New York, 1999, lxxiv+703 pages | DOI | MR | Zbl

[6] de la Harpe, P.; Pache, C.; Venkov, B. Construction of spherical cubature formulas using lattices, St. Petersbg. Math. J., Volume 18 (2007) no. 1, pp. 119-139 | DOI | Zbl

[7] Delsarte, P.; Goethals, J. M.; Seidel, J. J. Spherical codes and designs, Geometriae Dedicata, Volume 6 (1977) no. 3, pp. 363-388 | DOI | MR | Zbl

[8] Dickson, Leonard Eugene History of the theory of numbers. Vol. II: Diophantine analysis, Chelsea Publishing Co., New York, 1966, xxv+803 pages | MR

[9] Erdélyi, Arthur; Magnus, Wilhelm; Oberhettinger, Fritz; Tricomi, Francesco G. Higher transcendental functions. Vol. II, Robert E. Krieger Publishing Co., Inc., Melbourne, FL, 1981, xviii+396 pages | MR

[10] Heo, Sangwoo; Xu, Yuan Constructing fully symmetric cubature formulae for the sphere, Math. Comp., Volume 70 (2001) no. 233, pp. 269-279 | DOI | MR | Zbl

[11] Hong, Yiming On spherical t-designs in R 2 , European J. Combin., Volume 3 (1982) no. 3, pp. 255-258 | DOI | MR | Zbl

[12] Keast, Patrick Cubature formulas for the surface of the sphere, J. Comput. Appl. Math., Volume 17 (1987) no. 1-2, pp. 151-172 | DOI | MR | Zbl

[13] Korevaar, J.; Meyers, J. L. H. Spherical Faraday cage for the case of equal point charges and Chebyshev-type quadrature on the sphere, Integral Transform. Spec. Funct., Volume 1 (1993) no. 2, pp. 105-117 | DOI | MR | Zbl

[14] Lyubich, Yuri I.; Vaserstein, Leonid N. Isometric embeddings between classical Banach spaces, cubature formulas, and spherical designs, Geom. Dedicata, Volume 47 (1993) no. 3, pp. 327-362 | DOI | MR | Zbl

[15] Müller, Claus Spherical harmonics, Lecture Notes in Mathematics, 17, Springer-Verlag, Berlin-New York, 1966, iv+45 pages | MR | DOI | Zbl

[16] Nebe, G.; Rains, E. M.; Sloane, N. J. A. A simple construction for the Barnes-Wall lattices, Codes, graphs, and systems, Boston, MA: Kluwer Academic Publishers, 2002, pp. 333-342 | Zbl | DOI

[17] Nozaki, H.; Sawa, M. Remarks on Hilbert identities, isometric embeddings, and invariant cubature, Algebra i Analiz, Volume 25 (2013) no. 4, pp. 139-181 | DOI | MR

[18] Rabau, Patrick; Bajnok, Bela Bounds for the number of nodes in Chebyshev type quadrature formulas, J. Approx. Theory, Volume 67 (1991) no. 2, pp. 199-214 | DOI | MR | Zbl

[19] Sawa, Masanori; Hirao, Masatake; Ito, Kanami Geometric designs and rotatable designs I, Graphs Combin., Volume 37 (2021) no. 5, pp. 1605-1651 | DOI | MR | Zbl

[20] Sawa, Masanori; Hirao, Masatake; Kageyama, Sanpei Euclidean design theory, SpringerBriefs in Statistics, Springer, Singapore, 2019, viii+134 pages (JSS Research Series in Statistics) | DOI | MR | Zbl

[21] Sawa, Masanori; Xu, Yuan On positive cubature rules on the simplex and isometric embeddings, Math. Comp., Volume 83 (2014) no. 287, pp. 1251-1277 | DOI | MR | Zbl

[22] Seidel, J. J. Isometric embeddings and geometric designs, Discrete Math., Volume 136 (1994) no. 1, pp. 281-293 | DOI | MR | Zbl

[23] Siegel, C. L. Über einige Anwendungen diophantischer Approximationen., Abh. Preuß. Akad. Wiss., Phys.-Math. Kl., Volume 1929 (1929) no. 1, p. 70 s. | Zbl

[24] van Lint, J. H.; Wilson, R. M. A course in combinatorics, Cambridge University Press, Cambridge, 2001, xiv+602 pages | DOI | MR | Zbl

[25] Venkov, B. B. On even unimodular extremal lattices, Proc. Steklov Inst. Math., Volume 165 (1985), pp. 47-52 | Zbl

[26] Xiang, Ziqing Explicit spherical designs, Algebr. Comb., Volume 5 (2022) no. 2, pp. 347-369 | DOI | MR | Numdam | Zbl

[27] Xu, Yuan Orthogonal polynomials and cubature formulae on spheres and on simplices, Methods Appl. Anal., Volume 5 (1998) no. 2, pp. 169-184 | DOI | MR | Zbl

[28] Yamamoto, Hirotaka; Hirao, Masatake; Sawa, Masanori A construction of the fourth order rotatable designs invariant under the hyperoctahedral group, J. Statist. Plann. Inference, Volume 200 (2019), pp. 63-73 | DOI | MR | Zbl

Cited by Sources: