This paper explores a full generalization of the classical corner-vector method for constructing weighted spherical designs, which we call the generalized corner-vector method. First we establish a uniform upper bound for the degree of designs obtained from the proposed method. Our proof is a hybrid argument that employs techniques in analysis and combinatorics, especially a famous result by Xu (1998) on the interrelation between spherical designs and simplicial designs, and the cross-ratio comparison method for Hilbert identities introduced by Nozaki and Sawa (2013). We extensively study conditions for the existence of designs obtained from our method, and present many curious examples of degree $7$ through $13$, some of which are, to our surprise, characterized in terms of integral lattices.
Revised:
Accepted:
Published online:
Keywords: Cubature formula, explicit construction, Hilbert identity, integral lattice, simplicial design, spherical design
Tanino, Kenji 1; Tamaru, Tomoki 1; Hirao, Masatake 2; Sawa, Masanori 1
CC-BY 4.0
@article{ALCO_2025__8_5_1387_0,
author = {Tanino, Kenji and Tamaru, Tomoki and Hirao, Masatake and Sawa, Masanori},
title = {More on the corner-vector construction for spherical designs},
journal = {Algebraic Combinatorics},
pages = {1387--1414},
year = {2025},
publisher = {The Combinatorics Consortium},
volume = {8},
number = {5},
doi = {10.5802/alco.441},
language = {en},
url = {https://alco.centre-mersenne.org/articles/10.5802/alco.441/}
}
TY - JOUR AU - Tanino, Kenji AU - Tamaru, Tomoki AU - Hirao, Masatake AU - Sawa, Masanori TI - More on the corner-vector construction for spherical designs JO - Algebraic Combinatorics PY - 2025 SP - 1387 EP - 1414 VL - 8 IS - 5 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.441/ DO - 10.5802/alco.441 LA - en ID - ALCO_2025__8_5_1387_0 ER -
%0 Journal Article %A Tanino, Kenji %A Tamaru, Tomoki %A Hirao, Masatake %A Sawa, Masanori %T More on the corner-vector construction for spherical designs %J Algebraic Combinatorics %D 2025 %P 1387-1414 %V 8 %N 5 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.441/ %R 10.5802/alco.441 %G en %F ALCO_2025__8_5_1387_0
Tanino, Kenji; Tamaru, Tomoki; Hirao, Masatake; Sawa, Masanori. More on the corner-vector construction for spherical designs. Algebraic Combinatorics, Volume 8 (2025) no. 5, pp. 1387-1414. doi: 10.5802/alco.441
[1] Construction of spherical -designs, Geom. Dedicata, Volume 43 (1992) no. 2, pp. 167-179 | DOI | MR | Zbl
[2] Orbits of the hyperoctahedral group as Euclidean designs, J. Algebraic Combin., Volume 25 (2007) no. 4, pp. 375-397 | DOI | MR | Zbl
[3] A survey on spherical designs and algebraic combinatorics on spheres, European J. Combin., Volume 30 (2009) no. 6, pp. 1392-1425 | DOI | MR | Zbl
[4] Optimal asymptotic bounds for spherical designs, Ann. of Math. (2), Volume 178 (2013) no. 2, pp. 443-452 | DOI | MR | Zbl
[5] Sphere packings, lattices and groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 290, Springer-Verlag, New York, 1999, lxxiv+703 pages | DOI | MR | Zbl
[6] Construction of spherical cubature formulas using lattices, St. Petersbg. Math. J., Volume 18 (2007) no. 1, pp. 119-139 | DOI | Zbl
[7] Spherical codes and designs, Geometriae Dedicata, Volume 6 (1977) no. 3, pp. 363-388 | DOI | MR | Zbl
[8] History of the theory of numbers. Vol. II: Diophantine analysis, Chelsea Publishing Co., New York, 1966, xxv+803 pages | MR
[9] Higher transcendental functions. Vol. II, Robert E. Krieger Publishing Co., Inc., Melbourne, FL, 1981, xviii+396 pages | MR
[10] Constructing fully symmetric cubature formulae for the sphere, Math. Comp., Volume 70 (2001) no. 233, pp. 269-279 | DOI | MR | Zbl
[11] On spherical -designs in , European J. Combin., Volume 3 (1982) no. 3, pp. 255-258 | DOI | MR | Zbl
[12] Cubature formulas for the surface of the sphere, J. Comput. Appl. Math., Volume 17 (1987) no. 1-2, pp. 151-172 | DOI | MR | Zbl
[13] Spherical Faraday cage for the case of equal point charges and Chebyshev-type quadrature on the sphere, Integral Transform. Spec. Funct., Volume 1 (1993) no. 2, pp. 105-117 | DOI | MR | Zbl
[14] Isometric embeddings between classical Banach spaces, cubature formulas, and spherical designs, Geom. Dedicata, Volume 47 (1993) no. 3, pp. 327-362 | DOI | MR | Zbl
[15] Spherical harmonics, Lecture Notes in Mathematics, 17, Springer-Verlag, Berlin-New York, 1966, iv+45 pages | MR | DOI | Zbl
[16] A simple construction for the Barnes-Wall lattices, Codes, graphs, and systems, Boston, MA: Kluwer Academic Publishers, 2002, pp. 333-342 | Zbl | DOI
[17] Remarks on Hilbert identities, isometric embeddings, and invariant cubature, Algebra i Analiz, Volume 25 (2013) no. 4, pp. 139-181 | DOI | MR
[18] Bounds for the number of nodes in Chebyshev type quadrature formulas, J. Approx. Theory, Volume 67 (1991) no. 2, pp. 199-214 | DOI | MR | Zbl
[19] Geometric designs and rotatable designs I, Graphs Combin., Volume 37 (2021) no. 5, pp. 1605-1651 | DOI | MR | Zbl
[20] Euclidean design theory, SpringerBriefs in Statistics, Springer, Singapore, 2019, viii+134 pages (JSS Research Series in Statistics) | DOI | MR | Zbl
[21] On positive cubature rules on the simplex and isometric embeddings, Math. Comp., Volume 83 (2014) no. 287, pp. 1251-1277 | DOI | MR | Zbl
[22] Isometric embeddings and geometric designs, Discrete Math., Volume 136 (1994) no. 1, pp. 281-293 | DOI | MR | Zbl
[23] Über einige Anwendungen diophantischer Approximationen., Abh. Preuß. Akad. Wiss., Phys.-Math. Kl., Volume 1929 (1929) no. 1, p. 70 s. | Zbl
[24] A course in combinatorics, Cambridge University Press, Cambridge, 2001, xiv+602 pages | DOI | MR | Zbl
[25] On even unimodular extremal lattices, Proc. Steklov Inst. Math., Volume 165 (1985), pp. 47-52 | Zbl
[26] Explicit spherical designs, Algebr. Comb., Volume 5 (2022) no. 2, pp. 347-369 | DOI | MR | Numdam | Zbl
[27] Orthogonal polynomials and cubature formulae on spheres and on simplices, Methods Appl. Anal., Volume 5 (1998) no. 2, pp. 169-184 | DOI | MR | Zbl
[28] A construction of the fourth order rotatable designs invariant under the hyperoctahedral group, J. Statist. Plann. Inference, Volume 200 (2019), pp. 63-73 | DOI | MR | Zbl
Cited by Sources: