Operads on graphs: extending the pre-Lie operad and general construction
Algebraic Combinatorics, Volume 8 (2025) no. 5, pp. 1313-1348

The overall aim of this paper is to define a structure of graph operads, thus generalizing the celebrated pre-Lie operad on rooted trees. More precisely, we define two operads on multigraphs, and exhibit a non-trivial correspondence between them and the pre-Lie and Kontsevich-Willwacher operads. We study one of these operads in more detail. While its structure is too involved to exhibit a description by generators and relations, we show that it has interesting finitely generated sub-operads, with links with the commutative and the magmatic commutative operads. In particular, one of them is Koszul this allows us to compute its Koszul dual. Finally, we introduce a new framework on species and operads and a general way to define operads on multigraphs.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.442
Classification: 05E99, 05C76, 05C25
Keywords: graphs, species, operads, pre-Lie operad, Koszul duality

Aval, Jean-Christophe 1; Samuele, Giraudo 2; Karaboghossian, Théo 1; Tanasa, Adrian 3

1 Université de Bordeaux Bordeaux INP CNRS LaBRI UMR 5800 F-33400 Talence (France)
2 Université du Québec à Montréal LaCIM Montréal H2X 3Y7 (Canada)
3 H. Hulubei Natural Institute for Physics and Nuclear Engineering Magurele (Romania)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2025__8_5_1313_0,
     author = {Aval, Jean-Christophe and Samuele, Giraudo and Karaboghossian, Th\'eo and Tanasa, Adrian},
     title = {Operads on graphs: extending the {pre-Lie} operad and general construction},
     journal = {Algebraic Combinatorics},
     pages = {1313--1348},
     year = {2025},
     publisher = {The Combinatorics Consortium},
     volume = {8},
     number = {5},
     doi = {10.5802/alco.442},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.442/}
}
TY  - JOUR
AU  - Aval, Jean-Christophe
AU  - Samuele, Giraudo
AU  - Karaboghossian, Théo
AU  - Tanasa, Adrian
TI  - Operads on graphs: extending the pre-Lie operad and general construction
JO  - Algebraic Combinatorics
PY  - 2025
SP  - 1313
EP  - 1348
VL  - 8
IS  - 5
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.442/
DO  - 10.5802/alco.442
LA  - en
ID  - ALCO_2025__8_5_1313_0
ER  - 
%0 Journal Article
%A Aval, Jean-Christophe
%A Samuele, Giraudo
%A Karaboghossian, Théo
%A Tanasa, Adrian
%T Operads on graphs: extending the pre-Lie operad and general construction
%J Algebraic Combinatorics
%D 2025
%P 1313-1348
%V 8
%N 5
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.442/
%R 10.5802/alco.442
%G en
%F ALCO_2025__8_5_1313_0
Aval, Jean-Christophe; Samuele, Giraudo; Karaboghossian, Théo; Tanasa, Adrian. Operads on graphs: extending the pre-Lie operad and general construction. Algebraic Combinatorics, Volume 8 (2025) no. 5, pp. 1313-1348. doi: 10.5802/alco.442

[1] Aval, Jean-Christophe; Giraudo, Samuele; Karaboghossian, Théo; Tanasa, Adrian Graph insertion operads, Sémin. Lothar. Comb., Volume 84B (2020), Paper no. 66, 12 pages www.mat.univie.ac.at/~slc/wpapers/FPSAC2020/66.htm/... | Zbl | MR

[2] Bergeron, F.; Labelle, G.; Leroux, P. Combinatorial species and tree-like structures. Transl. from the French by Margaret Readdy, Encycl. Math. Appl., 67, Cambridge: Cambridge University Press, 1998 | Zbl | MR

[3] Bergeron, Nantel; Loday, Jean-Louis The symmetric operation in a free pre-Lie algebra is magmatic, Proc. Am. Math. Soc., Volume 139 (2011) no. 5, pp. 1585-1597 | DOI | Zbl | MR

[4] Chapoton, Frédéric Operads and algebraic combinatorics of trees, Sémin. Lothar. Comb., Volume 58 (2007), Paper no. b58c, 27 pages https://eudml.org/doc/227963 | Zbl | MR

[5] Chapoton, Frédéric; Livernet, Muriel Pre-Lie algebras and the rooted trees operad, Int. Math. Res. Not., Volume 2001 (2001) no. 8, pp. 395-408 | DOI | Zbl | MR

[6] Dotsenko, Vladimir; Khoroshkin, Anton Gröbner bases for operads, Duke Math. J., Volume 153 (2010) no. 2, pp. 363-396 | DOI | Zbl | MR

[7] Fiore, M. Lie Structure and Composition, Talk at CT2014, University of Cambridge, 2014 www.cl.cam.ac.uk/~mpf23/talks/CT2014.pdf

[8] Giraudo, Samuele Nonsymmetric operads in combinatorics, Cham: Springer, 2018 | DOI | Zbl | MR

[9] Hoffbeck, Eric A Poincaré-Birkhoff-Witt criterion for Koszul operads, Manuscr. Math., Volume 131 (2010) no. 1-2, pp. 87-110 | DOI | Zbl | MR

[10] Kontsevich, Maxim Operads and motives in deformation quantization, Lett. Math. Phys., Volume 48 (1999) no. 1, pp. 35-72 | DOI | Zbl | MR

[11] Kreimer, D. Combinatorics of (perturbative) quantum field theory, Phys. Rep., Volume 363 (2002) no. 4-6, pp. 387-424 | DOI | Zbl

[12] Livernet, Muriel A rigidity theorem for pre-Lie algebras, J. Pure Appl. Algebra, Volume 207 (2006) no. 1, pp. 1-18 | DOI | Zbl

[13] Loday, Jean-Louis; Vallette, Bruno Algebraic operads, Grundlehren Math. Wiss., 346, Berlin: Springer, 2012 hdl.handle.net/21.11116/0000-0004-1d0f-d | DOI | Zbl | MR

[14] Manin, Yuri I.; Vallette, Bruno Monoidal structures on the categories of quadratic data, Doc. Math., Volume 25 (2020), pp. 1727-1786 | DOI | Zbl | MR

[15] Markl, Martin; Shnider, Steve; Stasheff, Jim Operads in algebra, topology and physics, Math. Surv. Monogr., 96, Providence, RI: American Mathematical Society (AMS), 2002 | Zbl | MR

[16] Méndez, Miguel A. Set operads in combinatorics and computer science, SpringerBriefs Math., Cham: Springer, 2015 | DOI | MR | Zbl

[17] Sloane, Neil J. A. The On-Line Encyclopedia of Integer Sequences https://oeis.org/

[18] Willwacher, Thomas M. Kontsevich’s graph complex and the Grothendieck-Teichmüller Lie algebra, Invent. Math., Volume 200 (2015) no. 3, pp. 671-760 | DOI | Zbl | MR

[19] Yau, Donald Colored operads, Grad. Stud. Math., 170, Providence, RI: American Mathematical Society (AMS), 2016 | Zbl | MR

Cited by Sources: