The overall aim of this paper is to define a structure of graph operads, thus generalizing the celebrated pre-Lie operad on rooted trees. More precisely, we define two operads on multigraphs, and exhibit a non-trivial correspondence between them and the pre-Lie and Kontsevich-Willwacher operads. We study one of these operads in more detail. While its structure is too involved to exhibit a description by generators and relations, we show that it has interesting finitely generated sub-operads, with links with the commutative and the magmatic commutative operads. In particular, one of them is Koszul this allows us to compute its Koszul dual. Finally, we introduce a new framework on species and operads and a general way to define operads on multigraphs.
Revised:
Accepted:
Published online:
Keywords: graphs, species, operads, pre-Lie operad, Koszul duality
Aval, Jean-Christophe 1; Samuele, Giraudo 2; Karaboghossian, Théo 1; Tanasa, Adrian 3
CC-BY 4.0
@article{ALCO_2025__8_5_1313_0,
author = {Aval, Jean-Christophe and Samuele, Giraudo and Karaboghossian, Th\'eo and Tanasa, Adrian},
title = {Operads on graphs: extending the {pre-Lie} operad and general construction},
journal = {Algebraic Combinatorics},
pages = {1313--1348},
year = {2025},
publisher = {The Combinatorics Consortium},
volume = {8},
number = {5},
doi = {10.5802/alco.442},
language = {en},
url = {https://alco.centre-mersenne.org/articles/10.5802/alco.442/}
}
TY - JOUR AU - Aval, Jean-Christophe AU - Samuele, Giraudo AU - Karaboghossian, Théo AU - Tanasa, Adrian TI - Operads on graphs: extending the pre-Lie operad and general construction JO - Algebraic Combinatorics PY - 2025 SP - 1313 EP - 1348 VL - 8 IS - 5 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.442/ DO - 10.5802/alco.442 LA - en ID - ALCO_2025__8_5_1313_0 ER -
%0 Journal Article %A Aval, Jean-Christophe %A Samuele, Giraudo %A Karaboghossian, Théo %A Tanasa, Adrian %T Operads on graphs: extending the pre-Lie operad and general construction %J Algebraic Combinatorics %D 2025 %P 1313-1348 %V 8 %N 5 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.442/ %R 10.5802/alco.442 %G en %F ALCO_2025__8_5_1313_0
Aval, Jean-Christophe; Samuele, Giraudo; Karaboghossian, Théo; Tanasa, Adrian. Operads on graphs: extending the pre-Lie operad and general construction. Algebraic Combinatorics, Volume 8 (2025) no. 5, pp. 1313-1348. doi: 10.5802/alco.442
[1] Graph insertion operads, Sémin. Lothar. Comb., Volume 84B (2020), Paper no. 66, 12 pages www.mat.univie.ac.at/~slc/wpapers/FPSAC2020/66.htm/... | Zbl | MR
[2] Combinatorial species and tree-like structures. Transl. from the French by Margaret Readdy, Encycl. Math. Appl., 67, Cambridge: Cambridge University Press, 1998 | Zbl | MR
[3] The symmetric operation in a free pre-Lie algebra is magmatic, Proc. Am. Math. Soc., Volume 139 (2011) no. 5, pp. 1585-1597 | DOI | Zbl | MR
[4] Operads and algebraic combinatorics of trees, Sémin. Lothar. Comb., Volume 58 (2007), Paper no. b58c, 27 pages https://eudml.org/doc/227963 | Zbl | MR
[5] Pre-Lie algebras and the rooted trees operad, Int. Math. Res. Not., Volume 2001 (2001) no. 8, pp. 395-408 | DOI | Zbl | MR
[6] Gröbner bases for operads, Duke Math. J., Volume 153 (2010) no. 2, pp. 363-396 | DOI | Zbl | MR
[7] Lie Structure and Composition, Talk at CT2014, University of Cambridge, 2014 www.cl.cam.ac.uk/~mpf23/talks/CT2014.pdf
[8] Nonsymmetric operads in combinatorics, Cham: Springer, 2018 | DOI | Zbl | MR
[9] A Poincaré-Birkhoff-Witt criterion for Koszul operads, Manuscr. Math., Volume 131 (2010) no. 1-2, pp. 87-110 | DOI | Zbl | MR
[10] Operads and motives in deformation quantization, Lett. Math. Phys., Volume 48 (1999) no. 1, pp. 35-72 | DOI | Zbl | MR
[11] Combinatorics of (perturbative) quantum field theory, Phys. Rep., Volume 363 (2002) no. 4-6, pp. 387-424 | DOI | Zbl
[12] A rigidity theorem for pre-Lie algebras, J. Pure Appl. Algebra, Volume 207 (2006) no. 1, pp. 1-18 | DOI | Zbl
[13] Algebraic operads, Grundlehren Math. Wiss., 346, Berlin: Springer, 2012 hdl.handle.net/21.11116/0000-0004-1d0f-d | DOI | Zbl | MR
[14] Monoidal structures on the categories of quadratic data, Doc. Math., Volume 25 (2020), pp. 1727-1786 | DOI | Zbl | MR
[15] Operads in algebra, topology and physics, Math. Surv. Monogr., 96, Providence, RI: American Mathematical Society (AMS), 2002 | Zbl | MR
[16] Set operads in combinatorics and computer science, SpringerBriefs Math., Cham: Springer, 2015 | DOI | MR | Zbl
[17] The On-Line Encyclopedia of Integer Sequences https://oeis.org/
[18] M. Kontsevich’s graph complex and the Grothendieck-Teichmüller Lie algebra, Invent. Math., Volume 200 (2015) no. 3, pp. 671-760 | DOI | Zbl | MR
[19] Colored operads, Grad. Stud. Math., 170, Providence, RI: American Mathematical Society (AMS), 2016 | Zbl | MR
Cited by Sources: