Göttsche-Schroeter invariants are a genus $0$ extension of Block-Göttsche invariants. They interpolate between Welschinger invariants involving pairs of complex conjugated points and genus $0$ descendant Gromov-Witten invariants. They can be computed by a floor diagram algorithm.
In this paper, we show that this floor diagrams recipe actually leads to some invariants in any genus. This generalizes Göttsche-Schroeter invariant in higher genus in a combinatorial way. We then prove some polynomiality result and establish a link with invariants defined by Shustin and Sinichkin. We provide many examples. In particular, we conjecture that these combinatorial invariants satisfy the Abramovich-Bertram formula.
Revised:
Accepted:
Published online:
Keywords: tropical refined invariants, floor diagrams, Göttsche-Schroeter invariants
Mével, Gurvan 1
CC-BY 4.0
@article{ALCO_2025__8_5_1353_0,
author = {M\'evel, Gurvan},
title = {Combinatorial {G\"ottsche-Schroeter} invariants in any genus},
journal = {Algebraic Combinatorics},
pages = {1353--1386},
year = {2025},
publisher = {The Combinatorics Consortium},
volume = {8},
number = {5},
doi = {10.5802/alco.444},
language = {en},
url = {https://alco.centre-mersenne.org/articles/10.5802/alco.444/}
}
TY - JOUR AU - Mével, Gurvan TI - Combinatorial Göttsche-Schroeter invariants in any genus JO - Algebraic Combinatorics PY - 2025 SP - 1353 EP - 1386 VL - 8 IS - 5 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.444/ DO - 10.5802/alco.444 LA - en ID - ALCO_2025__8_5_1353_0 ER -
Mével, Gurvan. Combinatorial Göttsche-Schroeter invariants in any genus. Algebraic Combinatorics, Volume 8 (2025) no. 5, pp. 1353-1386. doi: 10.5802/alco.444
[1] The formula and its generalizations: counting rational curves on , Advances in algebraic geometry motivated by physics (Lowell, MA, 2000) (Contemp. Math.), Volume 276, Amer. Math. Soc., Providence, RI, 2001, pp. 83-88 | DOI | MR | Zbl
[2] Refined descendant invariants of toric surfaces, Discrete Comput. Geom., Volume 62 (2019) no. 1, pp. 180-208 | DOI | MR | Zbl
[3] Refined curve counting with tropical geometry, Compos. Math., Volume 152 (2016) no. 1, pp. 115-151 | DOI | MR | Zbl
[4] Asymptotic computations of tropical refined invariants in genus 0 and 1, J. Éc. polytech. Math., Volume 12 (2025), pp. 185-234 | DOI | MR | Zbl
[5] Refined floor diagrams from higher genera and lambda classes, Selecta Math. (N.S.), Volume 27 (2021) no. 3, Paper no. 43, 42 pages | DOI | MR | Zbl
[6] On the invariance of Welschinger invariants, Algebra i Analiz, Volume 32 (2020) no. 2, pp. 1-20 | MR
[7] Polynomiality properties of tropical refined invariants, Comb. Theory, Volume 2 (2022) no. 2, Paper no. 1, 53 pages | MR | Zbl
[8] Deformation and tropical Hirzebruch surfaces and enumerative geometry, J. Algebraic Geom., Volume 25 (2016) no. 4, pp. 633-702 | DOI | MR | Zbl
[9] Enumeration of curves via floor diagrams, C. R. Math. Acad. Sci. Paris, Volume 345 (2007) no. 6, pp. 329-334 | DOI | MR | Numdam
[10] Floor decompositions of tropical curves: the planar case, Proceedings of Gökova Geometry-Topology Conference 2008, Gökova Geometry/Topology Conference (GGT), Gökova (2009), pp. 64-90 | MR | Zbl
[11] Counting plane curves of any genus, Invent. Math., Volume 131 (1998) no. 2, pp. 345-392 | DOI | MR | Zbl
[12] Quantum intersection rings, The moduli space of curves (Texel Island, 1994) (Progr. Math.), Volume 129, Birkhäuser Boston, Boston, MA, 1995, pp. 81-148 | DOI | MR | Zbl
[13] Labeled floor diagrams for plane curves, J. Eur. Math. Soc. (JEMS), Volume 12 (2010) no. 6, pp. 1453-1496 | DOI | MR | Zbl
[14] Tropical enumerative invariants of and , Adv. Geom., Volume 11 (2011) no. 1, pp. 49-72 | DOI | MR | Zbl
[15] Broccoli curves and the tropical invariance of Welschinger numbers, Adv. Math., Volume 240 (2013), pp. 520-574 | DOI | MR | Zbl
[16] A conjectural generating function for numbers of curves on surfaces, Comm. Math. Phys., Volume 196 (1998) no. 3, pp. 523-533 | MR | DOI | Zbl
[17] Refined broccoli invariants, J. Algebraic Geom., Volume 28 (2019) no. 1, pp. 1-41 | DOI | MR | Zbl
[18] A Caporaso-Harris type formula for Welschinger invariants of real toric del Pezzo surfaces, Comment. Math. Helv., Volume 84 (2009) no. 1, pp. 87-126 | DOI | MR | Zbl
[19] On Block-Göttsche multiplicities for planar tropical curves, Int. Math. Res. Not. IMRN (2013) no. 23, pp. 5289-5320 | DOI | MR | Zbl
[20] Tropical refined curve counting with descendants, Volume 405, 2024 no. 10, Paper no. 240, 41 pages | DOI | MR | Zbl
[21] Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys., Volume 164 (1994) no. 3, pp. 525-562 | MR | Zbl | DOI
[22] Enumerative tropical algebraic geometry in , J. Amer. Math. Soc., Volume 18 (2005) no. 2, pp. 313-377 | DOI | MR | Zbl
[23] Refined elliptic tropical enumerative invariants, Israel J. Math., Volume 225 (2018) no. 2, pp. 817-869 | DOI | MR | Zbl
[24] A tropical calculation of the Welschinger invariants of real toric del Pezzo surfaces, J. Algebraic Geom., Volume 15 (2006) no. 2, pp. 285-322 | DOI | MR | Zbl
[25] Refined tropical invariants and characteristic numbers, 2024 | arXiv | Zbl
[26] Parameterizing tropical curves I: Curves of genus zero and one, Algebra Number Theory, Volume 8 (2014) no. 4, pp. 963-998 | DOI | MR | Zbl
[27] A proof of the Göttsche-Yau-Zaslow formula, J. Differential Geom., Volume 90 (2012) no. 3, pp. 439-472 | MR | Zbl
[28] Counting curves on rational surfaces, Manuscripta Math., Volume 102 (2000) no. 1, pp. 53-84 | DOI | MR | Zbl
[29] Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry, Invent. Math., Volume 162 (2005) no. 1, pp. 195-234 | DOI | MR | Zbl
Cited by Sources: