We investigate the “stratified Ehrhart ring theory” for periodic graphs, which gives an algorithm for determining the growth sequences of periodic graphs. The growth sequence $(s_{\Gamma , x_0, i})_{i \ge 0}$ is defined for a graph $\Gamma $ and its fixed vertex $x_0$, where $s_{\Gamma , x_0, i}$ is defined as the number of vertices of $\Gamma $ at distance $i$ from $x_0$. Although the sequences $(s_{\Gamma , x_0, i})_{i \ge 0}$ for periodic graphs are known to be of quasi-polynomial type, their determination had not been established, even in dimension two. Our theory and algorithm can be applied to arbitrary periodic graphs of any dimension. As an application of the algorithm, we determine the growth sequences in several new examples.
Revised:
Accepted:
Published online:
Keywords: periodic graphs, growth sequence, growth series, Ehrhart theory, convex geometry
Inoue, Takuya 1; Nakamura, Yusuke 2
CC-BY 4.0
@article{ALCO_2025__8_5_1193_0,
author = {Inoue, Takuya and Nakamura, Yusuke},
title = {Ehrhart theory on periodic graphs {II:} {Stratified} {Ehrhart} ring theory},
journal = {Algebraic Combinatorics},
pages = {1193--1232},
year = {2025},
publisher = {The Combinatorics Consortium},
volume = {8},
number = {5},
doi = {10.5802/alco.445},
language = {en},
url = {https://alco.centre-mersenne.org/articles/10.5802/alco.445/}
}
TY - JOUR AU - Inoue, Takuya AU - Nakamura, Yusuke TI - Ehrhart theory on periodic graphs II: Stratified Ehrhart ring theory JO - Algebraic Combinatorics PY - 2025 SP - 1193 EP - 1232 VL - 8 IS - 5 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.445/ DO - 10.5802/alco.445 LA - en ID - ALCO_2025__8_5_1193_0 ER -
%0 Journal Article %A Inoue, Takuya %A Nakamura, Yusuke %T Ehrhart theory on periodic graphs II: Stratified Ehrhart ring theory %J Algebraic Combinatorics %D 2025 %P 1193-1232 %V 8 %N 5 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.445/ %R 10.5802/alco.445 %G en %F ALCO_2025__8_5_1193_0
Inoue, Takuya; Nakamura, Yusuke. Ehrhart theory on periodic graphs II: Stratified Ehrhart ring theory. Algebraic Combinatorics, Volume 8 (2025) no. 5, pp. 1193-1232. doi: 10.5802/alco.445
[1] Corona limits of tilings: periodic case, Discrete Comput. Geom., Volume 61 (2019) no. 3, pp. 626-652 | MR | DOI | Zbl
[2] Root polytopes and growth series of root lattices, SIAM J. Discrete Math., Volume 25 (2011) no. 1, pp. 360-378 | DOI | MR | Zbl
[3] Séries de croissance et polynômes d’Ehrhart associés aux réseaux de racines, Ann. Inst. Fourier (Grenoble), Volume 49 (1999) no. 3, pp. 727-762 Symposium à la Mémoire de François Jaeger (Grenoble, 1998) | DOI | MR | Numdam | Zbl
[4] Computing the continuous discretely: integer-point enumeration in polyhedra, Undergraduate Texts in Mathematics, Springer, New York, 2015, xx+285 pages | DOI | MR | Zbl
[5] Polytopes, rings, and -theory, Springer Monographs in Mathematics, Springer, Dordrecht, 2009, xiv+461 pages | DOI | MR | Zbl
[6] Low-dimensional lattices. VII. Coordination sequences, Proc. Roy. Soc. London Ser. A, Volume 453 (1997) no. 1966, pp. 2369-2389 | DOI | Zbl | MR
[7] Topological density of nets: a direct calculation, Acta Crystallogr. Sect. A, Volume 60 (2004) no. 1, pp. 7-18 | Zbl | DOI | MR
[8] Velocity polytopes of periodic graphs and a no-go theorem for digital physics, Discrete Math., Volume 313 (2013) no. 12, pp. 1289-1301 | DOI | MR | Zbl
[9] 6-Uniform Tiling 673 of 673, 2025 https://probabilitysports.com/...
[10] A coloring-book approach to finding coordination sequences, Acta Crystallogr. Sect. A, Volume 75 (2019) no. 1, pp. 121-134 | MR | Zbl | DOI
[11] Algebraic Description of Coordination Sequences and Exact Topological Densities for Zeolites, Acta Crystallogr. Sect. A, Volume 52 (1996) no. 6, pp. 879-889 | DOI
[12] Homo citans and carbon allotropes: for an ethics of citation, Angew. Chem. Int. Ed., Volume 55 (2016) no. 37, pp. 10962-10976 | DOI
[13] Lectures on convex geometry, Graduate Texts in Mathematics, 286, Springer, Cham, 2020, xviii+287 pages | Zbl | DOI | MR
[14] The On-Line Encyclopedia of Integer Sequences, 2025 https://oeis.org/
[15] Ehrhart theory on periodic graphs, Algebr. Comb., Volume 7 (2024) no. 4, pp. 969-1010 | Zbl | DOI | MR
[16] Geometric aspects of large deviations for random walks on a crystal lattice, Microlocal analysis and complex Fourier analysis, World Sci. Publ., River Edge, NJ, 2002, pp. 215-223 | Zbl | DOI | MR
[17] Large deviation and the tangent cone at infinity of a crystal lattice, Math. Z., Volume 254 (2006) no. 4, pp. 837-870 | Zbl | DOI | MR
[18] Layer-by-Layer Growth Model for Partitions, Packings, and Graphs, Tranzit-X, Vladimir (2011) (in Russian)
[19] VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., Volume 44 (2011) no. 6, pp. 1272-1276 | DOI
[20] Coordination sequences of crystals are of quasi-polynomial type, Acta Crystallogr. Sect. A, Volume 77 (2021) no. 2, pp. 138-148 | Zbl | DOI
[21] Coordination sequences and layer-by-layer growth of periodic structures, Z. Kristallogr. Cryst. Mater., Volume 234 (2019) no. 5, pp. 291-299 | DOI
[22] Coordination sequences of 2-uniform graphs, Z. Kristallogr. Cryst. Mater., Volume 235 (2020) no. 4-5, pp. 157-166 | DOI
[23] Combinatorics and commutative algebra, Progress in Mathematics, 41, Birkhäuser Boston, Inc., Boston, MA, 1996, x+164 pages | MR
[24] Topological crystallography: with a view towards discrete geometric analysis, Surveys and Tutorials in the Applied Mathematical Sciences, 6, Springer, Tokyo, 2013, xii+229 pages | DOI | MR | Zbl
[25] Self-similar growth of periodic tilings and graphs, Algebra i Analiz, Volume 13 (2001) no. 2, pp. 69-92 | MR
Cited by Sources: