Ehrhart theory on periodic graphs II: Stratified Ehrhart ring theory
Algebraic Combinatorics, Volume 8 (2025) no. 5, pp. 1193-1232

We investigate the “stratified Ehrhart ring theory” for periodic graphs, which gives an algorithm for determining the growth sequences of periodic graphs. The growth sequence $(s_{\Gamma , x_0, i})_{i \ge 0}$ is defined for a graph $\Gamma $ and its fixed vertex $x_0$, where $s_{\Gamma , x_0, i}$ is defined as the number of vertices of $\Gamma $ at distance $i$ from $x_0$. Although the sequences $(s_{\Gamma , x_0, i})_{i \ge 0}$ for periodic graphs are known to be of quasi-polynomial type, their determination had not been established, even in dimension two. Our theory and algorithm can be applied to arbitrary periodic graphs of any dimension. As an application of the algorithm, we determine the growth sequences in several new examples.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.445
Classification: 05A15, 52B20, 05C30
Keywords: periodic graphs, growth sequence, growth series, Ehrhart theory, convex geometry

Inoue, Takuya 1; Nakamura, Yusuke 2

1 Graduate School of Mathematical Sciences the University of Tokyo 3-8-1 Komaba Meguro-ku Tokyo 153-8914 Japan
2 Graduate School of Mathematics Nagoya University Furo-cho Chikusa-ku Nagoya, 464-8602 Japan
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2025__8_5_1193_0,
     author = {Inoue, Takuya and Nakamura, Yusuke},
     title = {Ehrhart theory on periodic graphs {II:} {Stratified} {Ehrhart} ring theory},
     journal = {Algebraic Combinatorics},
     pages = {1193--1232},
     year = {2025},
     publisher = {The Combinatorics Consortium},
     volume = {8},
     number = {5},
     doi = {10.5802/alco.445},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.445/}
}
TY  - JOUR
AU  - Inoue, Takuya
AU  - Nakamura, Yusuke
TI  - Ehrhart theory on periodic graphs II: Stratified Ehrhart ring theory
JO  - Algebraic Combinatorics
PY  - 2025
SP  - 1193
EP  - 1232
VL  - 8
IS  - 5
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.445/
DO  - 10.5802/alco.445
LA  - en
ID  - ALCO_2025__8_5_1193_0
ER  - 
%0 Journal Article
%A Inoue, Takuya
%A Nakamura, Yusuke
%T Ehrhart theory on periodic graphs II: Stratified Ehrhart ring theory
%J Algebraic Combinatorics
%D 2025
%P 1193-1232
%V 8
%N 5
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.445/
%R 10.5802/alco.445
%G en
%F ALCO_2025__8_5_1193_0
Inoue, Takuya; Nakamura, Yusuke. Ehrhart theory on periodic graphs II: Stratified Ehrhart ring theory. Algebraic Combinatorics, Volume 8 (2025) no. 5, pp. 1193-1232. doi: 10.5802/alco.445

[1] Akiyama, Shigeki; Caalim, Jonathan; Imai, Katsunobu; Kaneko, Hajime Corona limits of tilings: periodic case, Discrete Comput. Geom., Volume 61 (2019) no. 3, pp. 626-652 | MR | DOI | Zbl

[2] Ardila, Federico; Beck, Matthias; Hoşten, Serkan; Pfeifle, Julian; Seashore, Kim Root polytopes and growth series of root lattices, SIAM J. Discrete Math., Volume 25 (2011) no. 1, pp. 360-378 | DOI | MR | Zbl

[3] Bacher, R.; de la Harpe, P.; Venkov, B. Séries de croissance et polynômes d’Ehrhart associés aux réseaux de racines, Ann. Inst. Fourier (Grenoble), Volume 49 (1999) no. 3, pp. 727-762 Symposium à la Mémoire de François Jaeger (Grenoble, 1998) | DOI | MR | Numdam | Zbl

[4] Beck, Matthias; Robins, Sinai Computing the continuous discretely: integer-point enumeration in polyhedra, Undergraduate Texts in Mathematics, Springer, New York, 2015, xx+285 pages | DOI | MR | Zbl

[5] Bruns, Winfried; Gubeladze, Joseph Polytopes, rings, and K-theory, Springer Monographs in Mathematics, Springer, Dordrecht, 2009, xiv+461 pages | DOI | MR | Zbl

[6] Conway, J. H.; Sloane, N. J. A. Low-dimensional lattices. VII. Coordination sequences, Proc. Roy. Soc. London Ser. A, Volume 453 (1997) no. 1966, pp. 2369-2389 | DOI | Zbl | MR

[7] Eon, Jean Guillaume Topological density of nets: a direct calculation, Acta Crystallogr. Sect. A, Volume 60 (2004) no. 1, pp. 7-18 | Zbl | DOI | MR

[8] Fritz, Tobias Velocity polytopes of periodic graphs and a no-go theorem for digital physics, Discrete Math., Volume 313 (2013) no. 12, pp. 1289-1301 | DOI | MR | Zbl

[9] Galebach, Brian 6-Uniform Tiling 673 of 673, 2025 https://probabilitysports.com/...

[10] Goodman-Strauss, C.; Sloane, N. J. A. A coloring-book approach to finding coordination sequences, Acta Crystallogr. Sect. A, Volume 75 (2019) no. 1, pp. 121-134 | MR | Zbl | DOI

[11] Grosse-Kunstleve, R. W.; Brunner, G. O.; Sloane, N. J. A. Algebraic Description of Coordination Sequences and Exact Topological Densities for Zeolites, Acta Crystallogr. Sect. A, Volume 52 (1996) no. 6, pp. 879-889 | DOI

[12] Hoffmann, Roald; Kabanov, Artyom A; Golov, Andrey A; Proserpio, Davide M Homo citans and carbon allotropes: for an ethics of citation, Angew. Chem. Int. Ed., Volume 55 (2016) no. 37, pp. 10962-10976 | DOI

[13] Hug, Daniel; Weil, Wolfgang Lectures on convex geometry, Graduate Texts in Mathematics, 286, Springer, Cham, 2020, xviii+287 pages | Zbl | DOI | MR

[14] Inc., The OEIS Foundation The On-Line Encyclopedia of Integer Sequences, 2025 https://oeis.org/

[15] Inoue, Takuya; Nakamura, Yusuke Ehrhart theory on periodic graphs, Algebr. Comb., Volume 7 (2024) no. 4, pp. 969-1010 | Zbl | DOI | MR

[16] Kotani, Motoko; Sunada, Toshikazu Geometric aspects of large deviations for random walks on a crystal lattice, Microlocal analysis and complex Fourier analysis, World Sci. Publ., River Edge, NJ, 2002, pp. 215-223 | Zbl | DOI | MR

[17] Kotani, Motoko; Sunada, Toshikazu Large deviation and the tangent cone at infinity of a crystal lattice, Math. Z., Volume 254 (2006) no. 4, pp. 837-870 | Zbl | DOI | MR

[18] Maleev, AV; Shutov, AV Layer-by-Layer Growth Model for Partitions, Packings, and Graphs, Tranzit-X, Vladimir (2011) (in Russian)

[19] Momma, Koichi; Izumi, Fujio VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., Volume 44 (2011) no. 6, pp. 1272-1276 | DOI

[20] Nakamura, Yusuke; Sakamoto, Ryotaro; Mase, Takafumi; Nakagawa, Junichi Coordination sequences of crystals are of quasi-polynomial type, Acta Crystallogr. Sect. A, Volume 77 (2021) no. 2, pp. 138-148 | Zbl | DOI

[21] Shutov, Anton; Maleev, Andrey Coordination sequences and layer-by-layer growth of periodic structures, Z. Kristallogr. Cryst. Mater., Volume 234 (2019) no. 5, pp. 291-299 | DOI

[22] Shutov, Anton; Maleev, Andrey Coordination sequences of 2-uniform graphs, Z. Kristallogr. Cryst. Mater., Volume 235 (2020) no. 4-5, pp. 157-166 | DOI

[23] Stanley, Richard P. Combinatorics and commutative algebra, Progress in Mathematics, 41, Birkhäuser Boston, Inc., Boston, MA, 1996, x+164 pages | MR

[24] Sunada, Toshikazu Topological crystallography: with a view towards discrete geometric analysis, Surveys and Tutorials in the Applied Mathematical Sciences, 6, Springer, Tokyo, 2013, xii+229 pages | DOI | MR | Zbl

[25] Zhuravlev, V. G. Self-similar growth of periodic tilings and graphs, Algebra i Analiz, Volume 13 (2001) no. 2, pp. 69-92 | MR

Cited by Sources: