Let $B$ be a weight-$3$ block of an Iwahori–Hecke algebra of type $B$ over any field. We develop the combinatorics of $B$ to prove that the decomposition numbers for $B$ are all $0$ or $1$.
Revised:
Accepted:
Published online:
Keywords: Iwahori-Hecke algebra, decomposition numbers, Specht modules
Fayers, Matthew 1; Putignano, Lorenzo 2
CC-BY 4.0
@article{ALCO_2025__8_5_1251_0,
author = {Fayers, Matthew and Putignano, Lorenzo},
title = {Decomposition numbers for weight $3$ blocks of {Iwahori{\textendash}Hecke} algebras of type $B$},
journal = {Algebraic Combinatorics},
pages = {1251--1284},
year = {2025},
publisher = {The Combinatorics Consortium},
volume = {8},
number = {5},
doi = {10.5802/alco.446},
language = {en},
url = {https://alco.centre-mersenne.org/articles/10.5802/alco.446/}
}
TY - JOUR AU - Fayers, Matthew AU - Putignano, Lorenzo TI - Decomposition numbers for weight $3$ blocks of Iwahori–Hecke algebras of type $B$ JO - Algebraic Combinatorics PY - 2025 SP - 1251 EP - 1284 VL - 8 IS - 5 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.446/ DO - 10.5802/alco.446 LA - en ID - ALCO_2025__8_5_1251_0 ER -
%0 Journal Article %A Fayers, Matthew %A Putignano, Lorenzo %T Decomposition numbers for weight $3$ blocks of Iwahori–Hecke algebras of type $B$ %J Algebraic Combinatorics %D 2025 %P 1251-1284 %V 8 %N 5 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.446/ %R 10.5802/alco.446 %G en %F ALCO_2025__8_5_1251_0
Fayers, Matthew; Putignano, Lorenzo. Decomposition numbers for weight $3$ blocks of Iwahori–Hecke algebras of type $B$. Algebraic Combinatorics, Volume 8 (2025) no. 5, pp. 1251-1284. doi: 10.5802/alco.446
[1] On the semi-simplicity of the Hecke algebra of , J. Algebra, Volume 169 (1994) no. 1, pp. 216-225 | Zbl | DOI | MR
[2] On the tensor product of two basic representations of , Adv. Math., Volume 218 (2008) no. 1, pp. 28-86 | Zbl | DOI | MR
[3] The number of simple modules of the Hecke algebras of type , Math. Z., Volume 233 (2000) no. 3, pp. 601-623 | Zbl | DOI | MR
[4] Graded decomposition numbers for cyclotomic Hecke algebras, Adv. Math., Volume 222 (2009) no. 6, pp. 1883-1942 | Zbl | DOI | MR
[5] Representations of Hecke algebras of type , J. Algebra, Volume 146 (1992) no. 2, pp. 454-481 | Zbl | DOI | MR
[6] Hecke algebras of type at roots of unity, Proc. London Math. Soc. (3), Volume 70 (1995) no. 3, pp. 505-528 | DOI | Zbl | MR
[7] Weight two blocks of Iwahori-Hecke algebras of type B, J. Algebra, Volume 303 (2006) no. 1, pp. 154-201 | DOI | MR | Zbl
[8] Weights of multipartitions and representations of Ariki-Koike algebras, Adv. Math., Volume 206 (2006) no. 1, pp. 112-144 | MR | Zbl | DOI
[9] Core blocks of Ariki-Koike algebras, J. Algebraic Combin., Volume 26 (2007) no. 1, pp. 47-81 | DOI | MR | Zbl
[10] Decomposition numbers for weight three blocks of symmetric groups and Iwahori-Hecke algebras, Trans. Amer. Math. Soc., Volume 360 (2008) no. 3, pp. 1341-1376 | DOI | MR | Zbl
[11] The Jantzen sum formula for cyclotomic -Schur algebras, Trans. Amer. Math. Soc., Volume 352 (2000) no. 11, pp. 5381-5404 | DOI | MR | Zbl
[12] Symmetric group blocks of small defect, J. Algebra, Volume 279 (2004) no. 2, pp. 566-612 | DOI | MR | Zbl
[13] Core blocks for Hecke algebras of type and sign sequences, Comm. Algebra, Volume 52 (2024) no. 5, pp. 1965-1981 | DOI | MR | Zbl
[14] Blocks of cyclotomic Hecke algebras, Adv. Math., Volume 216 (2007) no. 2, pp. 854-878 | DOI | MR | Zbl
[15] Graded decomposition numbers of Ariki-Koike algebras for blocks of small weight, J. Pure Appl. Algebra, Volume 220 (2016) no. 6, pp. 2112-2142 | DOI | Zbl | MR
[16] Tilting modules for cyclotomic Schur algebras, J. Reine Angew. Math., Volume 562 (2003), pp. 137-169 | Zbl | DOI | MR
[17] The representation theory of the Ariki-Koike and cyclotomic -Schur algebras, Representation theory of algebraic groups and quantum groups (Adv. Stud. Pure Math.), Volume 40, Math. Soc. Japan, Tokyo, 2004, pp. 261-320 | Zbl | DOI | MR
[18] Character values of Iwahori-Hecke algebras of type , Finite reductive groups (Luminy, 1994) (Progr. Math.), Volume 141, Birkhäuser Boston, Boston, MA, 1997, pp. 333-360 | Zbl | MR
[19] Some decomposition numbers for Hecke algebras of general linear groups, Math. Proc. Cambridge Philos. Soc., Volume 119 (1996) no. 3, pp. 383-402 | DOI | MR | Zbl
Cited by Sources: