We find exact and asymptotic formulas for the number of pairs $(s,z)$ of $N$-cycles $s$ and $z$ such that all cycles of the product $s\cdot z$ have lengths from a given set of integers. We then apply one of these results to prove a surprisingly high lower bound for the number of permutations whose block transposition distance from the identity is at least $(N+1)/2$.
Revised:
Accepted:
Published online:
Keywords: permutations, cycles, sorting, conjugacy classes
Bóna, Miklós 1; Pittel, Boris 2
CC-BY 4.0
@article{ALCO_2025__8_5_1233_0,
author = {B\'ona, Mikl\'os and Pittel, Boris},
title = {Permutations with restricted cycle lengths},
journal = {Algebraic Combinatorics},
pages = {1233--1249},
year = {2025},
publisher = {The Combinatorics Consortium},
volume = {8},
number = {5},
doi = {10.5802/alco.449},
language = {en},
url = {https://alco.centre-mersenne.org/articles/10.5802/alco.449/}
}
TY - JOUR AU - Bóna, Miklós AU - Pittel, Boris TI - Permutations with restricted cycle lengths JO - Algebraic Combinatorics PY - 2025 SP - 1233 EP - 1249 VL - 8 IS - 5 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.449/ DO - 10.5802/alco.449 LA - en ID - ALCO_2025__8_5_1233_0 ER -
%0 Journal Article %A Bóna, Miklós %A Pittel, Boris %T Permutations with restricted cycle lengths %J Algebraic Combinatorics %D 2025 %P 1233-1249 %V 8 %N 5 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.449/ %R 10.5802/alco.449 %G en %F ALCO_2025__8_5_1233_0
Bóna, Miklós; Pittel, Boris. Permutations with restricted cycle lengths. Algebraic Combinatorics, Volume 8 (2025) no. 5, pp. 1233-1249. doi: 10.5802/alco.449
[1] Sorting by transpositions, SIAM J. Discrete Math., Volume 11 (1998) no. 2, pp. 224-240 | Zbl | DOI | MR
[2] Nombre de représentations d’une permutation comme produit de deux cycles de longueurs données, Discrete Math., Volume 29 (1980) no. 2, pp. 105-134 | Zbl | DOI | MR
[3] Combinatorics of permutations, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2022, xix+507 pages | Zbl | DOI | MR
[4] On the cycle structure of the product of random maximal cycles, Sém. Lothar. Combin., Volume 80 ([2019–2021]), Paper no. B30b, 37 pages | MR
[5] Enumerative combinatorics, CRC Press Series on Discrete Mathematics and its Applications, Chapman & Hall/CRC, Boca Raton, FL, 2002, xvi+609 pages | Zbl | MR
[6] Sorting permutations by block-interchanges, Inform. Process. Lett., Volume 60 (1996) no. 4, pp. 165-169 | Zbl | DOI | MR
[7] Short proofs for cut-and-paste sorting of permutations, Discrete Math., Volume 307 (2007) no. 22, pp. 2866-2870 | Zbl | DOI | MR
[8] A 1.375-approximation algorithm for sorting by transpositions, Algorithms in bioinformatics (Lecture Notes in Comput. Sci.), Volume 3692, Springer, Berlin, 2005, pp. 204-215 | DOI | MR
[9] Sorting a bridge hand, Discrete Math., Volume 241 (2001) no. 1-3, pp. 289-300 | Zbl | DOI | MR
[10] Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015, xii+475 pages | MR
[11] Another proof of the Harer-Zagier formula, Electron. J. Combin., Volume 23 (2016) no. 1, Paper no. 1.21, 11 pages | Zbl | DOI | MR
[12] Probabilistic methods in combinatorial analysis, Encyclopedia of Mathematics and its Applications, 56, Cambridge University Press, Cambridge, 1997, x+246 pages (translated from the Russian) | Zbl | DOI | MR
[13] The symmetric group: representations, combinatorial algorithms, and symmetric functions, Graduate Texts in Mathematics, 203, Springer-Verlag, New York, 2001, xvi+238 pages | Zbl | DOI | MR
[14] Permutations with no runs of length 2, Space Programs Summary, Volume 37-40-4, California Institute of Technology, Pasadena, California, 1966, pp. 208-214
[15] Two enumerative results on cycles of permutations, European J. Combin., Volume 32 (2011) no. 6, pp. 937-943 | Zbl | DOI | MR
[16] Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 208, Cambridge University Press, Cambridge, 2024, xvi+783 pages | MR
[17] On the distribution of the number of cycles of elements in symmetric groups, Nieuw Arch. Wisk. (4), Volume 13 (1995) no. 3, pp. 489-495 | Zbl | MR
Cited by Sources: