The M-convexity of dual Schubert polynomials was first proven by Huh, Matherne, Mészáros, and St. Dizier in 2022. We give a full characterization of the support of dual Schubert polynomials, which yields an elementary alternative proof of the M-convexity result, and furthermore strengthens it by explicitly characterizing the vertices of their Newton polytopes combinatorially. Using this characterization, we give a polynomial-time algorithm to determine if a coefficient of a dual Schubert polynomial is zero, analogous to a result of Adve, Robichaux, and Yong for Schubert polynomials.
Revised:
Accepted:
Published online:
Keywords: Newton polytope, dual Schubert polynomial, M-convex
An, Serena 1; Tung, Katherine 2; Zhang, Yuchong 3
CC-BY 4.0
@article{ALCO_2025__8_6_1459_0,
author = {An, Serena and Tung, Katherine and Zhang, Yuchong},
title = {Newton polytopes of dual {Schubert} polynomials},
journal = {Algebraic Combinatorics},
pages = {1459--1472},
year = {2025},
publisher = {The Combinatorics Consortium},
volume = {8},
number = {6},
doi = {10.5802/alco.450},
language = {en},
url = {https://alco.centre-mersenne.org/articles/10.5802/alco.450/}
}
TY - JOUR AU - An, Serena AU - Tung, Katherine AU - Zhang, Yuchong TI - Newton polytopes of dual Schubert polynomials JO - Algebraic Combinatorics PY - 2025 SP - 1459 EP - 1472 VL - 8 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.450/ DO - 10.5802/alco.450 LA - en ID - ALCO_2025__8_6_1459_0 ER -
%0 Journal Article %A An, Serena %A Tung, Katherine %A Zhang, Yuchong %T Newton polytopes of dual Schubert polynomials %J Algebraic Combinatorics %D 2025 %P 1459-1472 %V 8 %N 6 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.450/ %R 10.5802/alco.450 %G en %F ALCO_2025__8_6_1459_0
An, Serena; Tung, Katherine; Zhang, Yuchong. Newton polytopes of dual Schubert polynomials. Algebraic Combinatorics, Volume 8 (2025) no. 6, pp. 1459-1472. doi: 10.5802/alco.450
[1] An efficient algorithm for deciding vanishing of Schubert polynomial coefficients, Adv. Math., Volume 383 (2021), Paper no. 107669, 38 pages | DOI | MR | Zbl
[2] On Minkowski sums of simplices, Ann. Comb., Volume 13 (2009) no. 3, pp. 271-287 | DOI | MR | Zbl
[3] Postnikov–Stanley polynomials are Lorentzian, 2024 | arXiv | Zbl
[4] Matroid polytopes and their volumes, Discrete Comput. Geom., Volume 43 (2010) no. 4, pp. 841-854 | DOI | MR | Zbl
[5] Schubert cells and cohomology of the spaces G/P, Russian Mathematical Surveys, Volume 28 (1973), pp. 1-26 | DOI | Zbl
[6] Combinatorics of Coxeter groups, Graduate Texts in Mathematics, 231, Springer, New York, 2005, xiv+363 pages | MR | Zbl
[7] Double Schubert polynomials do have saturated Newton polytopes, Forum Math. Sigma, Volume 11 (2023), Paper no. e100, 9 pages | DOI | MR | Zbl
[8] Schubert polynomials as integer point transforms of generalized permutahedra, Adv. Math., Volume 332 (2018), pp. 465-475 | DOI | MR | Zbl
[9] An involution on RC-graphs and a conjecture on dual Schubert polynomials by Postnikov and Stanley, Algebr. Comb., Volume 3 (2020) no. 3, pp. 593-602 | DOI | MR | Numdam | Zbl
[10] Newton polytopes of the classical resultant and discriminant, Adv. Math., Volume 84 (1990) no. 2, pp. 237-254 | DOI | MR | Zbl
[11] Dual Schubert polynomials via a Cauchy identity, 2023 | arXiv | Zbl
[12] Logarithmic concavity of Schur and related polynomials, Trans. Amer. Math. Soc., Volume 375 (2022) no. 6, pp. 4411-4427 | DOI | MR | Zbl
[13] An algorithm for finding maximum matching in general graphs, 21st Annual Symposium on Foundations of Computer Science (1980), pp. 17-27 | DOI
[14] Newton polytopes in algebraic combinatorics, Selecta Math. (N.S.), Volume 25 (2019) no. 5, Paper no. 66, 37 pages | DOI | MR | Zbl
[15] Discrete convex analysis, SIAM Monographs on Discrete Mathematics and Applications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2003, xxii+389 pages | DOI | MR | Zbl
[16] Permutohedra, associahedra, and beyond, Int. Math. Res. Not. IMRN (2009) no. 6, pp. 1026-1106 | DOI | MR | Zbl
[17] Chains in the Bruhat order, J. Algebraic Combin., Volume 29 (2009) no. 2, pp. 133-174 | DOI | MR | Zbl
[18] An inequality, J. London Math. Soc., Volume 27 (1952), pp. 1-6 | DOI | MR | Zbl
[19] SageMath, the Sage Mathematics Software System (Version 10.4) (2024) https://www.sagemath.org
[20] Catalan addendum to Enumerative Combinatorics. Vol. 2., 2013 https://math.mit.edu/~rstan/ec/catadd.pdf
Cited by Sources: