Lefschetz properties of local face modules
Algebraic Combinatorics, Volume 8 (2025) no. 6, pp. 1473-1491

Local face modules are modules over face rings whose Hilbert function is the local $h$-vector of a triangulation of a simplex. We study when Lefschetz properties hold for local face modules. We prove new inequalities for local $h$-vectors of vertex-induced triangulations by proving Lefschetz properties for local face modules of these triangulations. We show that, even for regular triangulations, Lefschetz properties can fail for local face modules in positive characteristic.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.453
Classification: 05E45, 05E40
Keywords: Lefschetz properties, local $h$-polynomial, subdivision

Larson, Matt 1; Stapledon, Alan 2

1 Princeton University, Department of Mathematics, Princeton, New Jersey
2 Sydney Mathematical Research Institute, Sydney, NSW, Australia
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2025__8_6_1473_0,
     author = {Larson, Matt and Stapledon, Alan},
     title = {Lefschetz properties of local face modules},
     journal = {Algebraic Combinatorics},
     pages = {1473--1491},
     year = {2025},
     publisher = {The Combinatorics Consortium},
     volume = {8},
     number = {6},
     doi = {10.5802/alco.453},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.453/}
}
TY  - JOUR
AU  - Larson, Matt
AU  - Stapledon, Alan
TI  - Lefschetz properties of local face modules
JO  - Algebraic Combinatorics
PY  - 2025
SP  - 1473
EP  - 1491
VL  - 8
IS  - 6
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.453/
DO  - 10.5802/alco.453
LA  - en
ID  - ALCO_2025__8_6_1473_0
ER  - 
%0 Journal Article
%A Larson, Matt
%A Stapledon, Alan
%T Lefschetz properties of local face modules
%J Algebraic Combinatorics
%D 2025
%P 1473-1491
%V 8
%N 6
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.453/
%R 10.5802/alco.453
%G en
%F ALCO_2025__8_6_1473_0
Larson, Matt; Stapledon, Alan. Lefschetz properties of local face modules. Algebraic Combinatorics, Volume 8 (2025) no. 6, pp. 1473-1491. doi: 10.5802/alco.453

[1] Adiprasito, Karim; Hou, Kaiying; Kiyohara, Daishi; Koizumi, Daniel; Stephenson, Monroe p-anisotropy on the moment curve for homology manifolds and cycles, 2025 | arXiv | Zbl

[2] Adiprasito, Karim; Papadakis, Stavros Argyrios; Petrotou, Vasiliki Anisotropy, biased pairings, and the Lefschetz property for pseudomanifolds and cycles, 2021 | arXiv | Zbl

[3] Adiprasito, Karim; Papadakis, Stavros Argyrios; Petrotou, Vasiliki; Steinmeyer, Johanna Kristina Beyond positivity in Ehrhart Theory, 2022 | arXiv | Zbl

[4] Athanasiadis, Christos A. Cubical subdivisions and local h-vectors, Ann. Comb., Volume 16 (2012) no. 3, pp. 421-448 | DOI | MR | Zbl

[5] Athanasiadis, Christos A. Flag subdivisions and γ-vectors, Pacific J. Math., Volume 259 (2012) no. 2, pp. 257-278 | DOI | Zbl | MR

[6] Athanasiadis, Christos A. A survey of subdivisions and local h-vectors, The mathematical legacy of Richard P. Stanley, Amer. Math. Soc., Providence, RI, 2016, pp. 39-51 | DOI | Zbl

[7] Barvinok, Alexander Integer points in polyhedra, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008, viii+191 pages | DOI | Zbl | MR

[8] Beck, Matthias; Robins, Sinai Computing the continuous discretely: integer-point enumeration in polyhedra, Undergraduate Texts in Mathematics, Springer, New York, 2015, xx+285 pages | DOI | Zbl | MR

[9] Beĭlinson, Aleksandr A.; Bernstein, Joseph N.; Deligne, Pierre Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) (Astérisque), Volume 100, Soc. Math. France, Paris, 1982, pp. 5-171 | Zbl | MR

[10] Brion, Michel The structure of the polytope algebra, Tohoku Math. J. (2), Volume 49 (1997) no. 1, pp. 1-32 | DOI | Zbl | MR

[11] Chan, Clara On subdivisions of simplicial complexes: characterizing local h-vectors, Discrete Comput. Geom., Volume 11 (1994) no. 4, pp. 465-476 | DOI | Zbl | MR

[12] Chan, Clara A survey of h-vectors and local h-vectors, Modern aspects of combinatorial structure on convex polytopes (Japanese) (Kyoto, 1993) (Sūrikaisekikenkyūsho Kōkyūroku), 1994 no. 857, pp. 81-98 | Zbl

[13] de Cataldo, Mark Andrea; Migliorini, Luca The decomposition theorem, perverse sheaves and the topology of algebraic maps, Bull. Amer. Math. Soc. (N.S.), Volume 46 (2009) no. 4, pp. 535-633 | DOI | Zbl | MR

[14] de Cataldo, Mark Andrea; Migliorini, Luca; Mustaţă, Mircea Combinatorics and topology of proper toric maps, J. Reine Angew. Math., Volume 744 (2018), pp. 133-163 | DOI | Zbl | MR

[15] Engler, Antonio J.; Prestel, Alexander Valued fields, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005, x+205 pages | Zbl | MR

[16] Fulton, William Introduction to toric varieties, Annals of Mathematics Studies, 131, Princeton University Press, Princeton, NJ, 1993, xii+157 pages | DOI | Zbl | MR

[17] Hall, P. On Representatives of Subsets, J. London Math. Soc., Volume 10 (1935) no. 1, pp. 26-30 | DOI | Zbl | MR

[18] Juhnke-Kubitzke, Martina; Murai, Satoshi; Sieg, Richard Local h-vectors of quasi-geometric and barycentric subdivisions, Discrete Comput. Geom., Volume 61 (2019) no. 2, pp. 364-379 | DOI | Zbl | MR

[19] Karu, Kalle; Larson, Matt; Stapledon, Alan Differential operators, anisotropy, and simplicial spheres, 2024 | arXiv | Zbl

[20] Karu, Kalle; Xiao, Elizabeth On the anisotropy theorem of Papadakis and Petrotou, Algebr. Comb., Volume 6 (2023) no. 5, pp. 1313-1330 | DOI | Numdam | Zbl | MR

[21] Katz, Eric; Stapledon, Alan Local h-polynomials, invariants of subdivisions, and mixed Ehrhart theory, Adv. Math., Volume 286 (2016), pp. 181-239 | DOI | MR | Zbl

[22] Larson, Matt; Novik, Isabella; Stapledon, Alan Determinants of Hodge–Riemann forms, 2024 | arXiv | Zbl

[23] Larson, Matt; Payne, Sam; Stapledon, Alan Resolutions of local face modules, functoriality, and vanishing of local h-vectors, Algebr. Comb., Volume 6 (2023) no. 4, pp. 1057-1072 | DOI | Numdam | Zbl | MR

[24] Larson, Matt; Stapledon, Sam Alanand Payne The local motivic monodromy conjecture for simplicial nondegenerate singularities, 2022 | arXiv | Zbl

[25] Oba, Ryoshun Multigraded strong Lefschetz property for balanced simplicial complexes, Algebr. Comb., Volume 8 (2025) no. 3, pp. 775-794 | DOI | Zbl | MR

[26] Papadakis, Stavros Argyrios; Petrotou, Vasiliki The characteristic 2 anisotropicity of simplicial spheres, 2020 | arXiv | Zbl

[27] Stanley, Richard P. Subdivisions and local h-vectors, J. Amer. Math. Soc., Volume 5 (1992) no. 4, pp. 805-851 | DOI | Zbl | MR

[28] Stanley, Richard P. Combinatorics and commutative algebra, Progress in Mathematics, 41, Birkhäuser Boston, Inc., Boston, MA, 1996, x+164 pages | MR | Zbl

[29] Stapledon, Alan Formulas for monodromy, Res. Math. Sci., Volume 4 (2017), Paper no. 8, 42 pages | DOI | MR | Zbl

Cited by Sources: