Local face modules are modules over face rings whose Hilbert function is the local $h$-vector of a triangulation of a simplex. We study when Lefschetz properties hold for local face modules. We prove new inequalities for local $h$-vectors of vertex-induced triangulations by proving Lefschetz properties for local face modules of these triangulations. We show that, even for regular triangulations, Lefschetz properties can fail for local face modules in positive characteristic.
Revised:
Accepted:
Published online:
Keywords: Lefschetz properties, local $h$-polynomial, subdivision
Larson, Matt 1; Stapledon, Alan 2
CC-BY 4.0
@article{ALCO_2025__8_6_1473_0,
author = {Larson, Matt and Stapledon, Alan},
title = {Lefschetz properties of local face modules},
journal = {Algebraic Combinatorics},
pages = {1473--1491},
year = {2025},
publisher = {The Combinatorics Consortium},
volume = {8},
number = {6},
doi = {10.5802/alco.453},
language = {en},
url = {https://alco.centre-mersenne.org/articles/10.5802/alco.453/}
}
TY - JOUR AU - Larson, Matt AU - Stapledon, Alan TI - Lefschetz properties of local face modules JO - Algebraic Combinatorics PY - 2025 SP - 1473 EP - 1491 VL - 8 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.453/ DO - 10.5802/alco.453 LA - en ID - ALCO_2025__8_6_1473_0 ER -
%0 Journal Article %A Larson, Matt %A Stapledon, Alan %T Lefschetz properties of local face modules %J Algebraic Combinatorics %D 2025 %P 1473-1491 %V 8 %N 6 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.453/ %R 10.5802/alco.453 %G en %F ALCO_2025__8_6_1473_0
Larson, Matt; Stapledon, Alan. Lefschetz properties of local face modules. Algebraic Combinatorics, Volume 8 (2025) no. 6, pp. 1473-1491. doi: 10.5802/alco.453
[1] -anisotropy on the moment curve for homology manifolds and cycles, 2025 | arXiv | Zbl
[2] Anisotropy, biased pairings, and the Lefschetz property for pseudomanifolds and cycles, 2021 | arXiv | Zbl
[3] Beyond positivity in Ehrhart Theory, 2022 | arXiv | Zbl
[4] Cubical subdivisions and local -vectors, Ann. Comb., Volume 16 (2012) no. 3, pp. 421-448 | DOI | MR | Zbl
[5] Flag subdivisions and -vectors, Pacific J. Math., Volume 259 (2012) no. 2, pp. 257-278 | DOI | Zbl | MR
[6] A survey of subdivisions and local -vectors, The mathematical legacy of Richard P. Stanley, Amer. Math. Soc., Providence, RI, 2016, pp. 39-51 | DOI | Zbl
[7] Integer points in polyhedra, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008, viii+191 pages | DOI | Zbl | MR
[8] Computing the continuous discretely: integer-point enumeration in polyhedra, Undergraduate Texts in Mathematics, Springer, New York, 2015, xx+285 pages | DOI | Zbl | MR
[9] Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) (Astérisque), Volume 100, Soc. Math. France, Paris, 1982, pp. 5-171 | Zbl | MR
[10] The structure of the polytope algebra, Tohoku Math. J. (2), Volume 49 (1997) no. 1, pp. 1-32 | DOI | Zbl | MR
[11] On subdivisions of simplicial complexes: characterizing local -vectors, Discrete Comput. Geom., Volume 11 (1994) no. 4, pp. 465-476 | DOI | Zbl | MR
[12] A survey of -vectors and local -vectors, Modern aspects of combinatorial structure on convex polytopes (Japanese) (Kyoto, 1993) (Sūrikaisekikenkyūsho Kōkyūroku), 1994 no. 857, pp. 81-98 | Zbl
[13] The decomposition theorem, perverse sheaves and the topology of algebraic maps, Bull. Amer. Math. Soc. (N.S.), Volume 46 (2009) no. 4, pp. 535-633 | DOI | Zbl | MR
[14] Combinatorics and topology of proper toric maps, J. Reine Angew. Math., Volume 744 (2018), pp. 133-163 | DOI | Zbl | MR
[15] Valued fields, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005, x+205 pages | Zbl | MR
[16] Introduction to toric varieties, Annals of Mathematics Studies, 131, Princeton University Press, Princeton, NJ, 1993, xii+157 pages | DOI | Zbl | MR
[17] On Representatives of Subsets, J. London Math. Soc., Volume 10 (1935) no. 1, pp. 26-30 | DOI | Zbl | MR
[18] Local -vectors of quasi-geometric and barycentric subdivisions, Discrete Comput. Geom., Volume 61 (2019) no. 2, pp. 364-379 | DOI | Zbl | MR
[19] Differential operators, anisotropy, and simplicial spheres, 2024 | arXiv | Zbl
[20] On the anisotropy theorem of Papadakis and Petrotou, Algebr. Comb., Volume 6 (2023) no. 5, pp. 1313-1330 | DOI | Numdam | Zbl | MR
[21] Local -polynomials, invariants of subdivisions, and mixed Ehrhart theory, Adv. Math., Volume 286 (2016), pp. 181-239 | DOI | MR | Zbl
[22] Determinants of Hodge–Riemann forms, 2024 | arXiv | Zbl
[23] Resolutions of local face modules, functoriality, and vanishing of local -vectors, Algebr. Comb., Volume 6 (2023) no. 4, pp. 1057-1072 | DOI | Numdam | Zbl | MR
[24] The local motivic monodromy conjecture for simplicial nondegenerate singularities, 2022 | arXiv | Zbl
[25] Multigraded strong Lefschetz property for balanced simplicial complexes, Algebr. Comb., Volume 8 (2025) no. 3, pp. 775-794 | DOI | Zbl | MR
[26] The characteristic 2 anisotropicity of simplicial spheres, 2020 | arXiv | Zbl
[27] Subdivisions and local -vectors, J. Amer. Math. Soc., Volume 5 (1992) no. 4, pp. 805-851 | DOI | Zbl | MR
[28] Combinatorics and commutative algebra, Progress in Mathematics, 41, Birkhäuser Boston, Inc., Boston, MA, 1996, x+164 pages | MR | Zbl
[29] Formulas for monodromy, Res. Math. Sci., Volume 4 (2017), Paper no. 8, 42 pages | DOI | MR | Zbl
Cited by Sources: