Using the connection between translation spreads of the generalized hexagon $H(q)$ and linear sets (see Cardinali et al. in Eur J Comb 23:367–376, 2002; Lunardon and Polverino in J Algebraic Comb 18:255–262, 2003), the non-existence of $\mathbb{F}_q$-translation spreads of $H(q^2)$ when $p>3$, $q=p^h$, and $q$ is large enough is proven. This answers to a question posed in [Marino and Polverino in J Algebraic Comb 42:725-744, 2015].
Revised:
Accepted:
Published online:
Keywords: generalized hexagon, spread, twisted cubic, linear sets
Bartoli, Daniele 1; Giannoni, Alessandro 2; Giulietti, Massimo 1; Marino, Giuseppe 2
CC-BY 4.0
@article{ALCO_2025__8_6_1603_0,
author = {Bartoli, Daniele and Giannoni, Alessandro and Giulietti, Massimo and Marino, Giuseppe},
title = {The non-existence of $\mathbb{F}_q$-translation spreads of $H(q^2)$},
journal = {Algebraic Combinatorics},
pages = {1603--1615},
year = {2025},
publisher = {The Combinatorics Consortium},
volume = {8},
number = {6},
doi = {10.5802/alco.456},
language = {en},
url = {https://alco.centre-mersenne.org/articles/10.5802/alco.456/}
}
TY - JOUR
AU - Bartoli, Daniele
AU - Giannoni, Alessandro
AU - Giulietti, Massimo
AU - Marino, Giuseppe
TI - The non-existence of $\mathbb{F}_q$-translation spreads of $H(q^2)$
JO - Algebraic Combinatorics
PY - 2025
SP - 1603
EP - 1615
VL - 8
IS - 6
PB - The Combinatorics Consortium
UR - https://alco.centre-mersenne.org/articles/10.5802/alco.456/
DO - 10.5802/alco.456
LA - en
ID - ALCO_2025__8_6_1603_0
ER -
%0 Journal Article
%A Bartoli, Daniele
%A Giannoni, Alessandro
%A Giulietti, Massimo
%A Marino, Giuseppe
%T The non-existence of $\mathbb{F}_q$-translation spreads of $H(q^2)$
%J Algebraic Combinatorics
%D 2025
%P 1603-1615
%V 8
%N 6
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.456/
%R 10.5802/alco.456
%G en
%F ALCO_2025__8_6_1603_0
Bartoli, Daniele; Giannoni, Alessandro; Giulietti, Massimo; Marino, Giuseppe. The non-existence of $\mathbb{F}_q$-translation spreads of $H(q^2)$. Algebraic Combinatorics, Volume 8 (2025) no. 6, pp. 1603-1615. doi: 10.5802/alco.456
[1] Generalized hexagons and BLT-sets, Finite geometry and combinatorics (Deinze, 1992) (London Math. Soc. Lecture Note Ser.), Volume 191, Cambridge Univ. Press, Cambridge, 1993, pp. 5-15 | DOI | MR | Zbl
[2] Translation ovoids of generalized quadrangles and hexagons, Geom. Dedicata, Volume 72 (1998) no. 1, pp. 19-62 | DOI | MR | Zbl
[3] On the classification of semifield flocks, Adv. Math., Volume 180 (2003) no. 1, pp. 104-111 | DOI | MR | Zbl
[4] The twisted cubic in and translation spreads in , Discrete Math., Volume 296 (2005) no. 2-3, pp. 129-142 | DOI | MR | Zbl
[5] Improved explicit estimates on the number of solutions of equations over a finite field, Finite Fields Appl., Volume 12 (2006) no. 2, pp. 155-185 | DOI | MR | Zbl
[6] Spreads in and 1-systems of , European J. Combin., Volume 23 (2002) no. 4, pp. 367-376 | DOI | MR | Zbl
[7] Finite projective spaces of three dimensions, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985, x+316 pages (Oxford Science Publications) | MR | Zbl
[8] Algebraic curves over a finite field, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2008, xx+696 pages | MR | Zbl | DOI
[9] Ovoids and translation planes, Canadian J. Math., Volume 34 (1982) no. 5, pp. 1195-1207 | DOI | MR | Zbl
[10] Sublines of prime order contained in the set of internal points of a conic, Des. Codes Cryptogr., Volume 38 (2006) no. 1, pp. 113-123 | DOI | MR | Zbl
[11] On the twisted cubic of , J. Algebraic Combin., Volume 18 (2003) no. 3, pp. 255-262 | DOI | MR | Zbl
[12] Flocks and locally Hermitian 1-systems of , Finite geometries (Dev. Math.), Volume 3, Kluwer Acad. Publ., Dordrecht, 2001, pp. 257-275 | DOI | MR | Zbl
[13] On translation spreads of , J. Algebraic Combin., Volume 42 (2015) no. 3, pp. 725-744 | DOI | MR | Zbl
[14] Translation ovoids and spreads of the generalized hexagon , Geom. Dedicata, Volume 85 (2001) no. 1-3, pp. 135-145 | DOI | MR | Zbl
[15] Translation spreads of the split Cayley hexagon, Adv. Geom., Volume 3 (2003) no. 2, pp. 105-121 | DOI | MR | Zbl
[16] Algebraic function fields and codes, Graduate Texts in Mathematics, 254, Springer-Verlag, Berlin, 2009, xiv+355 pages | MR | DOI | Zbl
[17] Polar spaces, generalized hexagons and perfect codes, J. Combin. Theory Ser. A, Volume 29 (1980) no. 1, pp. 87-93 | DOI | MR | Zbl
[18] Sur la trialité et certains groupes qui s’en déduisent, Inst. Hautes Études Sci. Publ. Math. (1959) no. 2, pp. 13-60 | MR | Numdam | Zbl
[19] Generalized polygons, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 1998, xvi+502 pages | DOI | MR | Zbl
Cited by Sources: