We construct a basis of the Garsia-Procesi ring using the catabolizability type of standard Young tableaux and the charge statistic. This basis turns out to be equal to the descent basis defined in [3]. Our new construction connects the combinatorics of the basis with the well-known combinatorial formula for the modified Hall-Littlewood polynomials $\tilde{H}_\mu [X;q]$, due to Lascoux, which expresses the polynomials as a sum over standard tableaux that satisfy a catabolizability condition. In addition, we prove that identifying a basis for the antisymmetric part of $R_{\mu }$ with respect to a Young subgroup $S_\gamma $ is equivalent to finding pairs of standard tableaux that satisfy conditions regarding catabolizability and descents. This gives an elementary proof of the fact that the graded Frobenius character of $R_{\mu }$ is given by the catabolizability formula for $\tilde{H}_\mu [X;q]$.
Revised:
Accepted:
Published online:
Keywords: Garsia-Procesi ring, Hall-Littlewood polynomials, charge, catabolism
Hanada, Mitsuki 1
CC-BY 4.0
@article{ALCO_2025__8_6_1617_0,
author = {Hanada, Mitsuki},
title = {A charge monomial basis of the {Garsia-Procesi} ring},
journal = {Algebraic Combinatorics},
pages = {1617--1649},
year = {2025},
publisher = {The Combinatorics Consortium},
volume = {8},
number = {6},
doi = {10.5802/alco.458},
language = {en},
url = {https://alco.centre-mersenne.org/articles/10.5802/alco.458/}
}
TY - JOUR AU - Hanada, Mitsuki TI - A charge monomial basis of the Garsia-Procesi ring JO - Algebraic Combinatorics PY - 2025 SP - 1617 EP - 1649 VL - 8 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.458/ DO - 10.5802/alco.458 LA - en ID - ALCO_2025__8_6_1617_0 ER -
Hanada, Mitsuki. A charge monomial basis of the Garsia-Procesi ring. Algebraic Combinatorics, Volume 8 (2025) no. 6, pp. 1617-1649. doi: 10.5802/alco.458
[1] An insertion algorithm for catabolizability, European J. Combin., Volume 33 (2012) no. 2, pp. 267-276 | DOI | MR | Zbl
[2] Subgroup lattices and symmetric functions, Mem. Amer. Math. Soc., Volume 112 (1994) no. 539, p. vi+160 | DOI | MR | Zbl
[3] A descent basis for the Garsia-Procesi module, Adv. Math., Volume 457 (2024), Paper no. 109945, 31 pages | DOI | MR | Zbl
[4] Symmetric functions, conjugacy classes and the flag variety, Invent. Math., Volume 64 (1981) no. 2, pp. 203-219 | DOI | MR | Zbl
[5] Representation theory, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991, xvi+551 pages | DOI | MR | Zbl
[6] On certain graded -modules and the -Kostka polynomials, Adv. Math., Volume 94 (1992) no. 1, pp. 82-138 | DOI | MR | Zbl
[7] A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups, Invent. Math., Volume 41 (1977) no. 2, pp. 113-127 | DOI | MR | Zbl
[8] Cyclic permutations on words, tableaux and harmonic polynomials, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), Manoj Prakashan, Madras, 1991, pp. 323-347 | MR | Zbl
[9] Sur une conjecture de H. O. Foulkes, C. R. Acad. Sci. Paris Sér. A-B, Volume 286 (1978) no. 7, p. A323-A324 | MR | Zbl
[10] Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015, xii+475 pages | MR | Zbl
[11] Graded characters of modules supported in the closure of a nilpotent conjugacy class, European J. Combin., Volume 21 (2000) no. 2, pp. 257-288 | DOI | MR | Zbl
[12] A construction of representations of Weyl groups, Invent. Math., Volume 44 (1978) no. 3, pp. 279-293 | DOI | MR | Zbl
[13] Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 208, Cambridge University Press, Cambridge, 2024, xvi+783 pages | MR
[14] Defining ideals of the closures of the conjugacy classes and representations of the Weyl groups, Tohoku Math. J. (2), Volume 34 (1982) no. 4, pp. 575-585 | DOI | MR | Zbl
Cited by Sources: