A charge monomial basis of the Garsia-Procesi ring
Algebraic Combinatorics, Volume 8 (2025) no. 6, pp. 1617-1649

We construct a basis of the Garsia-Procesi ring using the catabolizability type of standard Young tableaux and the charge statistic. This basis turns out to be equal to the descent basis defined in [3]. Our new construction connects the combinatorics of the basis with the well-known combinatorial formula for the modified Hall-Littlewood polynomials $\tilde{H}_\mu [X;q]$, due to Lascoux, which expresses the polynomials as a sum over standard tableaux that satisfy a catabolizability condition. In addition, we prove that identifying a basis for the antisymmetric part of $R_{\mu }$ with respect to a Young subgroup $S_\gamma $ is equivalent to finding pairs of standard tableaux that satisfy conditions regarding catabolizability and descents. This gives an elementary proof of the fact that the graded Frobenius character of $R_{\mu }$ is given by the catabolizability formula for $\tilde{H}_\mu [X;q]$.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.458
Classification: 05E10, 05E05, 05A30
Keywords: Garsia-Procesi ring, Hall-Littlewood polynomials, charge, catabolism

Hanada, Mitsuki 1

1 University of California, Berkeley, Department of Mathematics
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2025__8_6_1617_0,
     author = {Hanada, Mitsuki},
     title = {A charge monomial basis of the {Garsia-Procesi} ring},
     journal = {Algebraic Combinatorics},
     pages = {1617--1649},
     year = {2025},
     publisher = {The Combinatorics Consortium},
     volume = {8},
     number = {6},
     doi = {10.5802/alco.458},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.458/}
}
TY  - JOUR
AU  - Hanada, Mitsuki
TI  - A charge monomial basis of the Garsia-Procesi ring
JO  - Algebraic Combinatorics
PY  - 2025
SP  - 1617
EP  - 1649
VL  - 8
IS  - 6
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.458/
DO  - 10.5802/alco.458
LA  - en
ID  - ALCO_2025__8_6_1617_0
ER  - 
%0 Journal Article
%A Hanada, Mitsuki
%T A charge monomial basis of the Garsia-Procesi ring
%J Algebraic Combinatorics
%D 2025
%P 1617-1649
%V 8
%N 6
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.458/
%R 10.5802/alco.458
%G en
%F ALCO_2025__8_6_1617_0
Hanada, Mitsuki. A charge monomial basis of the Garsia-Procesi ring. Algebraic Combinatorics, Volume 8 (2025) no. 6, pp. 1617-1649. doi: 10.5802/alco.458

[1] Blasiak, Jonah An insertion algorithm for catabolizability, European J. Combin., Volume 33 (2012) no. 2, pp. 267-276 | DOI | MR | Zbl

[2] Butler, Lynne M. Subgroup lattices and symmetric functions, Mem. Amer. Math. Soc., Volume 112 (1994) no. 539, p. vi+160 | DOI | MR | Zbl

[3] Carlsson, Erik; Chou, Raymond A descent basis for the Garsia-Procesi module, Adv. Math., Volume 457 (2024), Paper no. 109945, 31 pages | DOI | MR | Zbl

[4] De Concini, Corrado; Procesi, Claudio Symmetric functions, conjugacy classes and the flag variety, Invent. Math., Volume 64 (1981) no. 2, pp. 203-219 | DOI | MR | Zbl

[5] Fulton, William; Harris, Joe Representation theory, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991, xvi+551 pages | DOI | MR | Zbl

[6] Garsia, A. M.; Procesi, C. On certain graded S n -modules and the q-Kostka polynomials, Adv. Math., Volume 94 (1992) no. 1, pp. 82-138 | DOI | MR | Zbl

[7] Hotta, R.; Springer, T. A. A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups, Invent. Math., Volume 41 (1977) no. 2, pp. 113-127 | DOI | MR | Zbl

[8] Lascoux, Alain Cyclic permutations on words, tableaux and harmonic polynomials, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), Manoj Prakashan, Madras, 1991, pp. 323-347 | MR | Zbl

[9] Lascoux, Alain; Schützenberger, Marcel-Paul Sur une conjecture de H. O. Foulkes, C. R. Acad. Sci. Paris Sér. A-B, Volume 286 (1978) no. 7, p. A323-A324 | MR | Zbl

[10] Macdonald, I. G. Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015, xii+475 pages | MR | Zbl

[11] Shimozono, Mark; Weyman, Jerzy Graded characters of modules supported in the closure of a nilpotent conjugacy class, European J. Combin., Volume 21 (2000) no. 2, pp. 257-288 | DOI | MR | Zbl

[12] Springer, T. A. A construction of representations of Weyl groups, Invent. Math., Volume 44 (1978) no. 3, pp. 279-293 | DOI | MR | Zbl

[13] Stanley, Richard P. Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 208, Cambridge University Press, Cambridge, 2024, xvi+783 pages | MR

[14] Tanisaki, Toshiyuki Defining ideals of the closures of the conjugacy classes and representations of the Weyl groups, Tohoku Math. J. (2), Volume 34 (1982) no. 4, pp. 575-585 | DOI | MR | Zbl

Cited by Sources: