We state combinatorial formulas for hyperoctahedral group ($\mathfrak{B}_n$) character evaluations of the form $\chi (\widetilde{C}^{\mathsf {BC}}_w(1))$ where $\widetilde{C}^{\mathsf {BC}}_w(1) \in \mathbb{Z}[\mathfrak{B}_n]$ is a type-$\mathsf {BC}$ Kazhdan–Lusztig basis element, with $w \in \mathfrak{B}_n$ corresponding to simultaneously smooth type-$\mathsf {B}$ and $\mathsf {C}$ Schubert varieties. We also extend the definition of symmetric group codominance to elements of $\mathfrak{B}_n$ and show that for each element $w \in \mathfrak{B}_n$ as above, there exists a $\mathsf {BC}$-codominant element $v \in \mathfrak{B}_n$ satisfying $\chi (\widetilde{C}^{\mathsf {BC}}_w(1)) = \chi (\widetilde{C}^{\mathsf {BC}}_v(1))$ for all $\mathfrak{B}_n$-characters $\chi $. Combinatorial structures and maps appearing in these formulas are type-$\mathsf {BC}$ extensions of planar networks, unit interval orders, indifference graphs, poset tableaux, and colorings. Using the ring of type-$\mathsf {BC}$ symmetric functions, we introduce natural generating functions $Y(\widetilde{C}^{\mathsf {BC}}_w(1))$ for the above evaluations. These provide a new type-$\mathsf {BC}$ analog of Stanley’s chromatic symmetric functions [Adv. Math. 111 (1995) pp. 166–194].
Revised:
Accepted:
Published online:
Keywords: hyperoctahedral group, characters, type-BC, graph coloring
Skandera, Mark A. 1
CC-BY 4.0
@article{ALCO_2025__8_6_1651_0,
author = {Skandera, Mark A.},
title = {Hyperoctahedral group characters and a {type-BC} analog of graph coloring},
journal = {Algebraic Combinatorics},
pages = {1651--1711},
year = {2025},
publisher = {The Combinatorics Consortium},
volume = {8},
number = {6},
doi = {10.5802/alco.459},
language = {en},
url = {https://alco.centre-mersenne.org/articles/10.5802/alco.459/}
}
TY - JOUR AU - Skandera, Mark A. TI - Hyperoctahedral group characters and a type-BC analog of graph coloring JO - Algebraic Combinatorics PY - 2025 SP - 1651 EP - 1711 VL - 8 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.459/ DO - 10.5802/alco.459 LA - en ID - ALCO_2025__8_6_1651_0 ER -
%0 Journal Article %A Skandera, Mark A. %T Hyperoctahedral group characters and a type-BC analog of graph coloring %J Algebraic Combinatorics %D 2025 %P 1651-1711 %V 8 %N 6 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.459/ %R 10.5802/alco.459 %G en %F ALCO_2025__8_6_1651_0
Skandera, Mark A. Hyperoctahedral group characters and a type-BC analog of graph coloring. Algebraic Combinatorics, Volume 8 (2025) no. 6, pp. 1651-1711. doi: 10.5802/alco.459
[1] Geometry of Hessenberg varieties with applications to Newton–Okounkov bodies, Selecta Math. (N.S.), Volume 24 (2018) no. 3, pp. 2129-2163 | DOI | MR | Zbl
[2] Hessenberg varieties and hyperplane arrangements, J. Reine Angew. Math., Volume 764 (2020), pp. 241-286 | DOI | MR | Zbl
[3] Splitting the cohomology of Hessenberg varieties and e-positivity of chromatic symmetric functions, 2023 | arXiv | Zbl
[4] An update on Haiman’s conjectures, Forum Math. Sigma, Volume 12 (2024), Paper no. e86, 15 pages | DOI | MR | Zbl
[5] A geometric approach to characters of Hecke algebras, J. Reine Angew. Math., Volume 821 (2025), pp. 53-114 | DOI | MR | Zbl
[6] Character formulas and descents for the hyperoctahedral group, Adv. in Appl. Math., Volume 87 (2017), pp. 128-169 | DOI | MR | Zbl
[7] Degeneracy loci, Pfaffians, and vexillary signed permutations in types B, C, and D, 2012 | arXiv | Zbl
[8] Vexillary signed permutations revisited, Algebr. Comb., Volume 3 (2020) no. 5, pp. 1041-1057 | DOI | MR | Numdam | Zbl
[9] Power sum expansion of chromatic quasisymmetric functions, Electron. J. Combin., Volume 22 (2015) no. 2, Paper no. 2.7, 9 pages | DOI | MR | Zbl
[10] The combinatorics of transition matrices between the bases of the symmetric functions and the analogues, Discrete Math., Volume 153 (1996), pp. 3-27 | DOI | Zbl | MR
[11] Pattern avoidance and rational smoothness of Schubert varieties, Adv. Math., Volume 139 (1998), pp. 141-156 | DOI | Zbl | MR
[12] Singular loci of Schubert varieties, Progress in Mathematics, 182, Birkhäuser Boston Inc., 2000, xii+251 pages | DOI | Zbl | MR
[13] Vexillary elements in the hyperoctahedral group, J. Algebraic Combin., Volume 8 (1998) no. 2, pp. 139-152 | DOI | MR | Zbl
[14] Kazhdan–Lusztig polynomials for -hexagon-avoiding permutations, J. Algebraic Combin., Volume 13 (2001) no. 2, pp. 111-136 | DOI | Zbl | MR
[15] Combinatorics of Coxeter groups, Graduate Texts in Mathmatics, 231, Springer, 2005 | Zbl | MR
[16] Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties, Adv. Math., Volume 329 (2018), pp. 955-1001 | DOI | MR | Zbl
[17] Ad-Nilpotent Ideals of a Borel Subalgebra, J. Algebra, Volume 225 (2000), pp. 130-141 | DOI | Zbl | MR
[18] Evaluations of Hecke algebra traces at Kazhdan-Lusztig basis elements, Electron. J. Combin., Volume 23 (2016) no. 2, Paper no. 2.7, 56 pages | DOI | MR | Zbl
[19] Total nonnegativity and Hecke algebra trace evaluations, Ann. Combin., Volume 25 (2021), pp. 757-787 | DOI | Zbl
[20] The index and spectrum of Lie poset algebras of types B, C, and D, Electron. J. Combin., Volume 28 (2021) no. 3, Paper no. 3.47, 23 pages | DOI | MR | Zbl
[21] Root and weight semigroup rings for signed posets, Ph. D. Thesis, University of Minnesota (2014), 183 pages https://www.proquest.com/...
[22] Hessenberg varieties, Trans. Amer. Math. Soc., Volume 332 (1992) no. 2, pp. 529-534 | DOI | MR | Zbl
[23] Generalized Eulerian numbers and the topology of the Hessenberg variety of a matrix, Acta Appl. Math., Volume 12 (1988) no. 3, pp. 213-235 | DOI | MR | Zbl
[24] A combinatorial setting for questions in Kazhdan–Lusztig theory, Geom. Dedicata, Volume 36 (1990) no. 1, pp. 95-119 | DOI | Zbl | MR
[25] Representations of Hecke algebras of type , J. Algebra, Volume 146 (1992), pp. 454-481 | DOI | Zbl | MR
[26] Sur la topologie de certains espaces homogènes, Ann. Math., Volume 35 (1934), pp. 396-443 | DOI | Zbl
[27] Signed poset homology and -analog Möbius functions, Ph. D. Thesis, University of Michigan (1993) https://www.proquest.com/...
[28] Interval orders and interval graphs, Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons, Ltd., Chichester, 1985, xi+215 pages | MR | Zbl
[29] Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs. New Series, 21, The Clarendon Press Oxford University Press, 2000, xvi+446 pages | DOI | MR | Zbl
[30] Determinants and plane partitions (1989) https://xavierviennot.org/... (Unpublished)
[31] Immanants, Schur functions, and the MacMahon master theorem, Proc. Amer. Math. Soc., Volume 115 (1992) no. 3, pp. 605-612 | DOI | MR | Zbl
[32] A second proof of the Shareshian–Wachs conjecture, by way of a new Hopf algebra, 2016 | arXiv | Zbl
[33] Hecke algebra characters and immanant conjectures, J. Amer. Math. Soc., Volume 6 (1993) no. 3, pp. 569-595 | DOI | MR | Zbl
[34] Toward permutation bases in the equivariant cohomology rings of regular semisimple Hessenberg varieties, Matematica, Volume 1 (2022) no. 1, pp. 263-316 | DOI | MR | Zbl
[35] On the notion of balance of a signed graph, Michigan Math. J., Volume 2 (1953/54), pp. 143-146 | DOI | MR | Zbl
[36] A proof of the Stanley–Stembridge conjecture, 2024 | arXiv
[37] Representations of Hecke algebras of finite groups with BN-pairs of classical type, Ph. D. Thesis, University of British Columbia (1974) https://www.proquest.com/...
[38] Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, 9, Springer-Verlag, New York-Berlin, 1978, xii+171 pages | MR | Zbl
[39] Bases of the quantum matrix bialgebra and induced sign characters of the Hecke algebra, J. Algebraic Combin., Volume 49 (2019) no. 4, pp. 475-505 | DOI | MR | Zbl
[40] Coincidence probabilities, Pacific J. Math., Volume 9 (1959), pp. 1141-1164 | DOI | MR | Zbl
[41] Representations of Coxeter groups and Hecke algebras, Invent. Math., Volume 53 (1979), pp. 165-184 | DOI | MR | Zbl
[42] Schubert varieties and Poincaré duality, Proc. Symp. Pure. Math., A.M.S., Volume 36 (1980), pp. 185-203 | DOI | Zbl
[43] Birational geometry of generalized Hessenberg varieties and the generalized Shareshian-Wachs conjecture, J. Combin. Theory Ser. A, Volume 206 (2024), Paper no. 105884, 45 pages | DOI | MR | Zbl
[44] Geometry of the twin manifolds of regular semisimple Hessenberg varieties and unicellular LLT polynomials, Algebr. Comb., Volume 7 (2024) no. 3, pp. 861-885 | DOI | MR | Zbl
[45] Generating functions for Hecke algebra characters, Canad. J. Math., Volume 63 (2011) no. 2, pp. 413-435 | DOI | MR | Zbl
[46] Chromatic Signed-Symmetric Functions of Signed Graphs, 2021 | arXiv | Zbl
[47] Criterion for smoothness of Schubert Varieties in , Proc. Indian Acad. Sci. (Math Sci.), Volume 100 (1990) no. 1, pp. 45-52 | DOI | MR | Zbl
[48] Theta-vexillary signed permutations, Electron. J. Combin., Volume 25 (2018) no. 4, Paper no. 4.53, 30 pages | DOI | MR | Zbl
[49] Schubert Polynomials and the Littlewood–Richardson Rule, Letters in Math. Physics, Volume 10 (1985), pp. 111-124 | DOI | MR | Zbl
[50] On the vector representations of induced matroids, Bull. London Math. Soc., Volume 5 (1973), pp. 85-90 | DOI | MR | Zbl
[51] The theory of group characters and matrix representations of groups, AMS Chelsea Publishing, Providence, RI, 2006, viii+314 pages | DOI | MR | Zbl
[52] Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015, xii+475 pages | MR | Zbl
[53] Inequalities and identities for generalized matrix functions, Linear Algebra Appl., Volume 64 (1985), pp. 223-242 | DOI | MR | Zbl
[54] Affine pavings of Hessenberg varieties for semisimple groups, Selecta Math. (N.S.), Volume 19 (2013) no. 4, pp. 903-922 | DOI | MR | Zbl
[55] Classical Bruhat Orders and Lexicographic Shellability, J. Algebra, Volume 77 (1982), pp. 104-126 | DOI | MR | Zbl
[56] Signed posets, J. Combin. Theory Ser. A, Volume 62 (1993) no. 2, pp. 324-360 | DOI | MR | Zbl
[57] Eschers and Stanley’s chromatic e-positivity conjecture in length-2, 2023 | arXiv | Zbl
[59] Chromatic quasisymmetric functions and Hessenberg varieties, Configuration Spaces (Bjorner, A; Cohen, F; De Concini, C; Procesi, C; Salvetti, M, eds.), Edizione Della Normale (2012), pp. 433-460 | DOI | Zbl
[60] Chromatic quasisymmetric functions, Adv. Math., Volume 295 (2016), pp. 497-551 | DOI | MR | Zbl
[61] On the dual canonical and Kazhdan-Lusztig bases and 3412-, 4231-avoiding permutations, J. Pure Appl. Algebra, Volume 212 (2008) no. 5, pp. 1086-1104 | DOI | MR | Zbl
[62] Characters and chromatic symmetric functions, Electron. J. Combin., Volume 28 (2021) no. 2, Paper no. P2.19, 39 pages | DOI | MR | Zbl
[63] Generating functions for monomial characters of wreath products , Enum. Combin. Appl., Volume 1 (2021) no. 2, Paper no. S2R10, 10 pages | DOI | MR | Zbl
[64] A symmetric function generalization of the chromatic polynomial of a graph, Adv. Math., Volume 111 (1995) no. 1, pp. 166-194 | DOI | MR | Zbl
[65] Positivity problems and conjectures in algebraic combinatorics, Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, pp. 295-319 | MR | Zbl
[66] Enumerative combinatorics. Volume 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 2012, xiv+626 pages | MR | Zbl
[67] Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 208, Cambridge University Press, Cambridge, 2024, xvi+783 pages | MR
[68] On immanants of Jacobi-Trudi matrices and permutations with restricted position, J. Combin. Theory Ser. A, Volume 62 (1993) no. 2, pp. 261-279 | DOI | MR | Zbl
[69] Ordinary representations of (1987) (Unpublished)
[70] Some conjectures for immanants, Canad. J. Math., Volume 44 (1992) no. 5, pp. 1079-1099 | DOI | MR | Zbl
[71] Degeneracy locus formulas for amenable Weyl group elements, 2022 | arXiv | Zbl
[72] Combinatorics and partially ordered sets, Johns Hopkins Series in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 1992, xvi+307 pages | MR | Zbl
[73] Linear conditions imposed on flag varieties, Amer. J. Math., Volume 128 (2006) no. 6, pp. 1587-1604 | MR | DOI | Zbl
[74] Permutation actions on equivariant cohomology of flag varieties, Toric topology (Contemp. Math), Volume 460, Amer. Math. Soc., Providence, RI, 2008, pp. 365-384 | DOI | MR | Zbl
[75] Permutation representations on Schubert varieties, Amer. J. Math., Volume 130 (2008) no. 5, pp. 1171-1194 | DOI | MR | Zbl
[76] Signed graph coloring, Discrete Math., Volume 39 (1982), pp. 215-228 | DOI | MR | Zbl
Cited by Sources: