The codegree $\mathrm{codeg}(\mathcal{P})$ of a lattice polytope $\mathcal{P}$ is a fundamental invariant in discrete geometry. In the present paper, we investigate the codegree of the stable set polytope $\mathcal{P}_G$ associated with a simple graph $G$. Specifically, we establish the inequalities
| \[ \omega (G) + 1 \le \mathrm{codeg}(\mathcal{P}_G) \le \chi (G) + 1, \] |
where $\omega (G)$ and $\chi (G)$ denote the clique number and the chromatic number of $G$, respectively. Furthermore, an explicit formula for $\mathrm{codeg}(\mathcal{P}_G)$ is given when $G$ is either a line graph or an $h$-perfect graph. Finally, as an application of these results, we provide upper and lower bounds on the regularity of the toric ring associated with $\mathcal{P}_G$.
Revised:
Accepted:
Published online:
Keywords: stable set polytope, codegree, clique number, chromatic number, matching polytope, perfect graph, h-perfect graph, toric ring, regularity
Matsushita, Koji 1; Tsuchiya, Akiyoshi 2
CC-BY 4.0
@article{ALCO_2025__8_6_1743_0,
author = {Matsushita, Koji and Tsuchiya, Akiyoshi},
title = {Codegree and regularity of stable set polytopes},
journal = {Algebraic Combinatorics},
pages = {1743--1751},
year = {2025},
publisher = {The Combinatorics Consortium},
volume = {8},
number = {6},
doi = {10.5802/alco.460},
language = {en},
url = {https://alco.centre-mersenne.org/articles/10.5802/alco.460/}
}
TY - JOUR AU - Matsushita, Koji AU - Tsuchiya, Akiyoshi TI - Codegree and regularity of stable set polytopes JO - Algebraic Combinatorics PY - 2025 SP - 1743 EP - 1751 VL - 8 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.460/ DO - 10.5802/alco.460 LA - en ID - ALCO_2025__8_6_1743_0 ER -
%0 Journal Article %A Matsushita, Koji %A Tsuchiya, Akiyoshi %T Codegree and regularity of stable set polytopes %J Algebraic Combinatorics %D 2025 %P 1743-1751 %V 8 %N 6 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.460/ %R 10.5802/alco.460 %G en %F ALCO_2025__8_6_1743_0
Matsushita, Koji; Tsuchiya, Akiyoshi. Codegree and regularity of stable set polytopes. Algebraic Combinatorics, Volume 8 (2025) no. 6, pp. 1743-1751. doi: 10.5802/alco.460
[1] Computing the continuous discretely, Undergraduate Texts in Mathematics, Springer, New York, 2015, xx+285 pages | DOI | MR | Zbl
[2] Les problèmes de coloration en théorie des graphes, Publ. Inst. Statist. Univ. Paris, Volume 9 (1960), pp. 123-160 | MR | Zbl
[3] Normaliz. Algorithms for rational cones and affine monoids, Available at https://www.normaliz.uni-osnabrueck.de
[4] Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1993, xii+403 pages | MR | Zbl
[5] The strong perfect graph theorem, Ann. of Math. (2), Volume 164 (2006) no. 1, pp. 51-229 | DOI | MR | Zbl
[6] On certain polytopes associated with graphs, J. Combinatorial Theory Ser. B, Volume 18 (1975), pp. 138-154 | DOI | MR | Zbl
[7] Maximum matching and a polyhedron with -vertices, J. Res. Nat. Bur. Standards Sect. B, Volume 69B (1965), pp. 125-130 | MR | DOI | Zbl
[8] Macaulay2, a software system for research in algebraic geometry, Available at http://www2.macaulay2.com
[9] Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers, J. Algebraic Combin., Volume 27 (2008) no. 2, pp. 215-245 | DOI | MR | Zbl
[10] Binomial ideals, Graduate Texts in Mathematics, 279, Springer, Cham, 2018, xix+321 pages | DOI | MR | Zbl
[11] Ehrhart theory of spanning lattice polytopes, Int. Math. Res. Not. IMRN (2018) no. 19, pp. 5947-5973 | DOI | MR | Zbl
[12] Characteristic-independence of Betti numbers of graph ideals, J. Combin. Theory Ser. A, Volume 113 (2006) no. 3, pp. 435-454 | DOI | MR | Zbl
[13] Toric rings and ideals of stable set polytopes, Mathematics, Volume 7 (2019), p. 613 | DOI
[14] Convex polytopes all of whose reverse lexicographic initial ideals are squarefree, Proc. Amer. Math. Soc., Volume 129 (2001) no. 9, pp. 2541-2546 | DOI | MR | Zbl
[15] Special simplices and Gorenstein toric rings, J. Combin. Theory Ser. A, Volume 113 (2006) no. 4, pp. 718-725 | DOI | MR | Zbl
[16] On the facial structure of set packing polyhedra, Math. Programming, Volume 5 (1973), pp. 199-215 | DOI | MR | Zbl
[17] A class of -perfect graphs, Discrete Math., Volume 51 (1984) no. 2, pp. 191-205 | DOI | MR | Zbl
Cited by Sources: