Bases for cluster algebras from orbifolds with one marked point
Algebraic Combinatorics, Volume 2 (2019) no. 3, pp. 355-365.

We generalize the construction of the bangle, band and bracelet bases for cluster algebras from unpunctured orbifolds to the case where there is only one marked point on the boundary.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.48
Classification: 13F60
Keywords: cluster algebra, unpunctured orbifold, basis, snake graph
Çanakçı, İlke 1; Tumarkin, Pavel 2

1 Newcastle University School of Mathematics, Statistics and Physics Newcastle-upon-Tyne NE1 7RU United Kingdom
2 Durham University Department of Mathematical Sciences Lower Mountjoy Stockton Road Durham DH1 3LE United Kingdom
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2019__2_3_355_0,
     author = {\c{C}anak\c{c}{\i}, \.Ilke and Tumarkin, Pavel},
     title = {Bases for cluster algebras from orbifolds with one marked point},
     journal = {Algebraic Combinatorics},
     pages = {355--365},
     publisher = {MathOA foundation},
     volume = {2},
     number = {3},
     year = {2019},
     doi = {10.5802/alco.48},
     zbl = {07066879},
     mrnumber = {3968742},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.48/}
}
TY  - JOUR
AU  - Çanakçı, İlke
AU  - Tumarkin, Pavel
TI  - Bases for cluster algebras from orbifolds with one marked point
JO  - Algebraic Combinatorics
PY  - 2019
DA  - 2019///
SP  - 355
EP  - 365
VL  - 2
IS  - 3
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.48/
UR  - https://zbmath.org/?q=an%3A07066879
UR  - https://www.ams.org/mathscinet-getitem?mr=3968742
UR  - https://doi.org/10.5802/alco.48
DO  - 10.5802/alco.48
LA  - en
ID  - ALCO_2019__2_3_355_0
ER  - 
%0 Journal Article
%A Çanakçı, İlke
%A Tumarkin, Pavel
%T Bases for cluster algebras from orbifolds with one marked point
%J Algebraic Combinatorics
%D 2019
%P 355-365
%V 2
%N 3
%I MathOA foundation
%U https://doi.org/10.5802/alco.48
%R 10.5802/alco.48
%G en
%F ALCO_2019__2_3_355_0
Çanakçı, İlke; Tumarkin, Pavel. Bases for cluster algebras from orbifolds with one marked point. Algebraic Combinatorics, Volume 2 (2019) no. 3, pp. 355-365. doi : 10.5802/alco.48. https://alco.centre-mersenne.org/articles/10.5802/alco.48/

[1] Çanakçı, İlke; Lee, Kyungyong; Schiffler, Ralf On cluster algebras from unpunctured surfaces with one marked point, Proc. Am. Math. Soc., Ser. B, Volume 2 (2015), pp. 35-49 | DOI | MR | Zbl

[2] Çanakçı, İlke; Schiffler, Ralf Snake graph calculus and cluster algebras from surfaces, J. Algebra, Volume 382 (2013), pp. 240-281 | DOI | MR | Zbl

[3] Çanakçı, İlke; Schiffler, Ralf Snake graph calculus and cluster algebras from surfaces II: self-crossing snake graphs, Math. Z., Volume 281 (2015) no. 1-2, pp. 55-102 | DOI | MR | Zbl

[4] Çanakçı, İlke; Schiffler, Ralf Snake graph calculus and cluster algebras from surfaces III: band graphs and snake rings, Int. Math. Res. Not., Volume 2019 (2019) no. 4, pp. 1145-1226 | DOI | MR | Zbl

[5] Felikson, Anna; Shapiro, Michael; Tumarkin, Pavel Cluster algebras and triangulated orbifolds, Adv. Math., Volume 231 (2012) no. 5, pp. 2953-3002 | DOI | MR | Zbl

[6] Felikson, Anna; Shapiro, Michael; Tumarkin, Pavel Cluster algebras of finite mutation type via unfoldings, Int. Math. Res. Not. (2012) no. 8, pp. 1768-1804 | DOI | MR | Zbl

[7] Felikson, Anna; Tumarkin, Pavel Bases for cluster algebras from orbifolds, Adv. Math., Volume 318 (2017), pp. 191-232 | DOI | MR | Zbl

[8] Fock, Vladimir; Goncharov, Alexander Moduli spaces of local systems and higher Teichmüller theory, Publ. Math., Inst. Hautes Étud. Sci. (2006) no. 103, pp. 1-211 | DOI | Numdam | MR | Zbl

[9] Fomin, Sergey; Shapiro, Michael; Thurston, Dylan Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math., Volume 201 (2008) no. 1, pp. 83-146 | DOI | MR | Zbl

[10] Fomin, Sergey; Thurston, Dylan Cluster algebras and triangulated surfaces Part II: Lambda lengths, Mem. Am. Math. Soc., Volume 255 (2018) no. 1223, p. v+97 | MR | Zbl

[11] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras. I. Foundations, J. Am. Math. Soc., Volume 15 (2002) no. 2, pp. 497-529 | DOI | MR | Zbl

[12] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras. IV. Coefficients, Compos. Math., Volume 143 (2007) no. 1, pp. 112-164 | DOI | MR | Zbl

[13] Musiker, Gregg; Schiffler, Ralf; Williams, Lauren Positivity for cluster algebras from surfaces, Adv. Math., Volume 227 (2011) no. 6, pp. 2241-2308 | DOI | MR | Zbl

[14] Musiker, Gregg; Schiffler, Ralf; Williams, Lauren Bases for cluster algebras from surfaces, Compos. Math., Volume 149 (2013) no. 2, pp. 217-263 | DOI | MR | Zbl

[15] Schiffler, Ralf Cluster algebras from surfaces: lecture notes for the CIMPA School Mar del Plata, March 2016, Homological methods, representation theory, and cluster algebras (CRM Short Courses), Springer, 2018, pp. 65-99 | DOI | MR | Zbl

[16] Thurston, Dylan Positive basis for surface skein algebras, Proc. Natl. Acad. Sci. USA, Volume 111 (2014) no. 27, pp. 9725-9732 | DOI | MR | Zbl

Cited by Sources: