Bipartite distance-regular graphs and taut pairs of pseudo primitive idempotents
Algebraic Combinatorics, Volume 2 (2019) no. 4, pp. 499-520.

Let Γ denote a bipartite distance-regular graph with diameter D4, valency k3, and intersection numbers c i ,b i (0iD). By a pseudo cosine sequence of Γ we mean a sequence of complex scalars σ 0 ,σ 1 ,...,σ D such that σ 0 =1 and c i σ i-1 +b i σ i+1 =kσ 1 σ i for 1iD-1. By an associated pseudo primitive idempotent of Γ, we mean a nonzero scalar multiple of the matrix i=0 D σ i A i , where A 0 ,A 1 ,...,A D are the distance matrices of Γ. Given pseudo primitive idempotents E,F of Γ, we define the pair E,F to be taut whenever the entry-wise product EF is not a scalar multiple of a pseudo primitive idempotent, but is a linear combination of two pseudo primitive idempotents of Γ. In this paper, we determine all the taut pairs of pseudo primitive idempotents of Γ.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.51
Classification: 05E30
Keywords: distance-regular graph, pseudo primitive idempotent, taut pair

MacLean, Mark S. 1; Miklavič, Štefko 2

1 Mathematics Department Seattle University 901 Twelfth Avenue Seattle WA 98122-1090, USA
2 University of Primorska Andrej Marušič Institute Muzejski trg 2 6000 Koper, Slovenia
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2019__2_4_499_0,
     author = {MacLean, Mark S. and Miklavi\v{c}, \v{S}tefko},
     title = {Bipartite distance-regular graphs and taut pairs of pseudo primitive idempotents},
     journal = {Algebraic Combinatorics},
     pages = {499--520},
     publisher = {MathOA foundation},
     volume = {2},
     number = {4},
     year = {2019},
     doi = {10.5802/alco.51},
     zbl = {1417.05250},
     mrnumber = {3997508},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.51/}
}
TY  - JOUR
AU  - MacLean, Mark S.
AU  - Miklavič, Štefko
TI  - Bipartite distance-regular graphs and taut pairs of pseudo primitive idempotents
JO  - Algebraic Combinatorics
PY  - 2019
SP  - 499
EP  - 520
VL  - 2
IS  - 4
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.51/
DO  - 10.5802/alco.51
LA  - en
ID  - ALCO_2019__2_4_499_0
ER  - 
%0 Journal Article
%A MacLean, Mark S.
%A Miklavič, Štefko
%T Bipartite distance-regular graphs and taut pairs of pseudo primitive idempotents
%J Algebraic Combinatorics
%D 2019
%P 499-520
%V 2
%N 4
%I MathOA foundation
%U https://alco.centre-mersenne.org/articles/10.5802/alco.51/
%R 10.5802/alco.51
%G en
%F ALCO_2019__2_4_499_0
MacLean, Mark S.; Miklavič, Štefko. Bipartite distance-regular graphs and taut pairs of pseudo primitive idempotents. Algebraic Combinatorics, Volume 2 (2019) no. 4, pp. 499-520. doi : 10.5802/alco.51. https://alco.centre-mersenne.org/articles/10.5802/alco.51/

[1] Bannai, Eiichi; Ito, Tatsuro Algebraic Combinatorics I, Association Schemes, Mathematics lecture note series, 58, Benjamin/Cummings Publishing Company, Inc, 1984 | Zbl

[2] Brouwer, Andries E.; Cohen, Arjeh M.; Neumaier, Arnold Distance-Regular Graphs, A Series of Modern Surveys in Mathematics, Springer-Verlag, 1989 | Zbl

[3] Curtin, Brian 2-homogeneous bipartite distance-regular graphs, Discrete Mathematics, Volume 187 (1998) no. 1-3, pp. 39-70 | DOI | MR | Zbl

[4] Curtin, Brian Almost 2-homogeneous bipartite distance-regular graphs, European Journal of Combinatorics, Volume 21 (2000) no. 7, pp. 865-876 | DOI | MR | Zbl

[5] Jurišić, Aleksandar; Terwilliger, Paul Pseudo 1-homogeneous distance-regular graphs, Journal of Algebraic Combinatorics, Volume 28 (2008) no. 4, pp. 509-529 | DOI | MR | Zbl

[6] Lang, Michael S Pseudo primitive idempotents and almost 2-homogeneous bipartite distance-regular graphs, European Journal of Combinatorics, Volume 29 (2008) no. 1, pp. 35-44 | DOI | MR | Zbl

[7] Lang, Michael S Bipartite distance-regular graphs: the Q-polynomial property and pseudo primitive idempotents, Discrete Mathematics, Volume 331 (2014), pp. 27-35 | DOI | MR | Zbl

[8] MacLean, Mark S Taut distance-regular graphs of odd diameter, Journal of Algebraic Combinatorics, Volume 17 (2003) no. 2, pp. 125-147 | DOI | MR | Zbl

[9] MacLean, Mark S The local eigenvalues of a bipartite distance-regular graph, European Journal of Combinatorics, Volume 45 (2015), pp. 115-123 | DOI | MR | Zbl

[10] MacLean, Mark S; Miklavič, Štefko; Penjić, Safet On the Terwilliger algebra of bipartite distance-regular graphs with Δ 2 =0 and c 2 =1, Linear Algebra and its Applications, Volume 496 (2016), pp. 307-330 | DOI | Zbl

[11] MacLean, Mark S; Terwilliger, Paul Taut distance-regular graphs and the subconstituent algebra, Discrete mathematics, Volume 306 (2006) no. 15, pp. 1694-1721 | DOI | MR | Zbl

[12] Pascasio, Arlene A; Terwilliger, Paul The pseudo-cosine sequences of a distance-regular graph, Linear algebra and its applications, Volume 419 (2006) no. 2-3, pp. 532-555 | DOI | MR | Zbl

[13] Penjić, Safet On the Terwilliger algebra of bipartite distance-regular graphs with Δ 2 =0 and c 2 =2, Discrete Mathematics, Volume 340 (2017) no. 3, pp. 452-466 | DOI | MR | Zbl

[14] Terwilliger, Paul; Weng, Chih-wen Distance-regular graphs, pseudo primitive idempotents, and the Terwilliger algebra, European Journal of Combinatorics, Volume 25 (2004) no. 2, pp. 287-298 | DOI | MR | Zbl

Cited by Sources: