The Birkhoff polytope is the convex hull of all permutation matrices in . We compute the combinatorial symmetry group of the Birkhoff polytope.
A representation polytope is the convex hull of some finite matrix group . We show that the group of permutation matrices is essentially the only finite matrix group which yields a representation polytope with the same face lattice as the Birkhoff polytope.
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.6
Keywords: Birkhoff polytope, representation polytope, permutation polytope, combinatorial symmetry
Baumeister, Barbara 1; Ladisch, Frieder 2
@article{ALCO_2018__1_2_275_0, author = {Baumeister, Barbara and Ladisch, Frieder}, title = {A property of the {Birkhoff} polytope}, journal = {Algebraic Combinatorics}, pages = {275--281}, publisher = {MathOA foundation}, volume = {1}, number = {2}, year = {2018}, doi = {10.5802/alco.6}, mrnumber = {3856525}, zbl = {06882342}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.6/} }
TY - JOUR AU - Baumeister, Barbara AU - Ladisch, Frieder TI - A property of the Birkhoff polytope JO - Algebraic Combinatorics PY - 2018 SP - 275 EP - 281 VL - 1 IS - 2 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.6/ DO - 10.5802/alco.6 LA - en ID - ALCO_2018__1_2_275_0 ER -
Baumeister, Barbara; Ladisch, Frieder. A property of the Birkhoff polytope. Algebraic Combinatorics, Volume 1 (2018) no. 2, pp. 275-281. doi : 10.5802/alco.6. https://alco.centre-mersenne.org/articles/10.5802/alco.6/
[1] On Permutation Polytopes: Notions of Equivalence, J. Algebraic Combin., Volume 41 (2015) no. 4, pp. 1103-1114 | DOI | MR | Zbl
[2] On Permutation Polytopes, Adv. Math., Volume 222 (2009) no. 2, pp. 431-452 | DOI | MR | Zbl
[3] Permutation Polytopes of Cyclic Groups, 2011, 15 pages (preprint, https://arxiv.org/abs/1109.0191v1) | MR | Zbl
[4] A Measuring Argument for Finite Groups, Proc. Amer. Math. Soc., Volume 107 (1989) no. 4, pp. 907-914 | DOI | MR | Zbl
[5] Affine Symmetries of Orbit Polytopes, Adv. Math., Volume 288 (2016), pp. 386-425 | DOI | MR | Zbl
[6] Permutation Polytopes and Indecomposable Elements in Permutation Groups, J. Combin. Theory Ser. A, Volume 113 (2006) no. 7, pp. 1243-1256 | DOI | MR | Zbl
[7] Finite Group Theory, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2008 no. 92, xii+350 pages | DOI | MR | Zbl
[8] Finite Reflection Groups and Linear Preserver Problems, Rocky Mountain J. Math., Volume 34 (2004) no. 1, pp. 225-251 | DOI | MR | Zbl
[9] Linear Maps Preserving Permutation and Stochastic Matrices, Linear Algebra Appl., Volume 341 (2002), pp. 5-22 | DOI | MR | Zbl
[10] Matching Theory, North-Holland Mathematics Studies, North-Holland, 1986 no. 121, xxvii+544 pages (Annals of Discrete Mathematics 29) | MR | Zbl
Cited by Sources: