Maximal green sequences for cluster-tilted algebras of finite representation type
Algebraic Combinatorics, Volume 2 (2019) no. 5, pp. 753-780.

We show that, for any cluster-tilted algebra of finite representation type over an algebraically closed field, the following three definitions of a maximal green sequence are equivalent: (1) the usual definition in terms of Fomin–Zelevinsky mutation of the extended exchange matrix, (2) a complete forward hom-orthogonal sequence of Schurian modules, (3) the sequence of wall crossings of a generic green path. Together with [24], this completes the foundational work needed to support the author’s work with P. J. Apruzzese [1], namely, to determine all lengths of all maximal green sequences for all quivers whose underlying graph is an oriented or unoriented cycle and to determine which are “linear”.

In an Appendix, written jointly with G. Todorov, we give a conjectural description of maximal green sequences of maximum length for any cluster-tilted algebra of finite representation type.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.61
Classification: 16G10,  13F60
Keywords: c-vectors, forward hom-orthogonal sequences, Jacobian algebras, quivers with potential, cluster mutation, stability conditions, tilted algebras
Igusa, Kiyoshi 1

1 Brandeis University Department of Mathematics 415 South St. Waltham, MA 02454, (USA)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2019__2_5_753_0,
     author = {Igusa, Kiyoshi},
     title = {Maximal green sequences for cluster-tilted algebras of finite representation type},
     journal = {Algebraic Combinatorics},
     pages = {753--780},
     publisher = {MathOA foundation},
     volume = {2},
     number = {5},
     year = {2019},
     doi = {10.5802/alco.61},
     zbl = {1422.16010},
     mrnumber = {4023565},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.61/}
}
TY  - JOUR
AU  - Igusa, Kiyoshi
TI  - Maximal green sequences for cluster-tilted algebras of finite representation type
JO  - Algebraic Combinatorics
PY  - 2019
DA  - 2019///
SP  - 753
EP  - 780
VL  - 2
IS  - 5
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.61/
UR  - https://zbmath.org/?q=an%3A1422.16010
UR  - https://www.ams.org/mathscinet-getitem?mr=4023565
UR  - https://doi.org/10.5802/alco.61
DO  - 10.5802/alco.61
LA  - en
ID  - ALCO_2019__2_5_753_0
ER  - 
%0 Journal Article
%A Igusa, Kiyoshi
%T Maximal green sequences for cluster-tilted algebras of finite representation type
%J Algebraic Combinatorics
%D 2019
%P 753-780
%V 2
%N 5
%I MathOA foundation
%U https://doi.org/10.5802/alco.61
%R 10.5802/alco.61
%G en
%F ALCO_2019__2_5_753_0
Igusa, Kiyoshi. Maximal green sequences for cluster-tilted algebras of finite representation type. Algebraic Combinatorics, Volume 2 (2019) no. 5, pp. 753-780. doi : 10.5802/alco.61. https://alco.centre-mersenne.org/articles/10.5802/alco.61/

[1] Apruzzese, P. J.; Igusa, Kiyoshi Stability conditions for affine type A (2018) (https://arxiv.org/abs/1804.09100)

[2] Assem, Ibrahim Tilted algebras of type A n , Comm in Algebra, Volume 19 (1982) no. 10, pp. 2121-2139 | DOI | Zbl

[3] Assem, Ibrahim A course on cluster-tilted algebras, Homological Methods, Representation Theory, and Cluster Algebras, Springer, 2018, pp. 127-176 | DOI | Zbl

[4] Assem, Ibrahim; Brüstle, Thomas; Schiffler, Ralf Cluster-tilted algebras as trivial extensions, Bull London Math Soc, Volume 40 (2008) no. 1, pp. 151-162 | DOI | MR

[5] Assem, Ibrahim; Happel, Dieter Generalized tilted algebras of type A n , Comm in Algebra, Volume 20 (1981) no. 9, pp. 2101-2125 | DOI | MR | Zbl

[6] Assem, Ibrahim; Simson, Daniel; Skowroński, Andrzej Elements of the representation theory of associative algebras. Vol. 1, London Mathematical Society Student Texts, 65, Cambridge University Press, Cambridge, 2006, x+458 pages (Techniques of representation theory) | MR | Zbl

[7] Beligiannis, Apostolos; Reiten, Idun Homological and homotopical aspects of torsion theories, Memoirs of AMS, 883, American Mathematical Soc., 2007 | Zbl

[8] Bridgeland, Tom Stability conditions on triangulated categories, Ann. Math., Volume 166 (2007) no. 2, pp. 317-345 | DOI | MR | Zbl

[9] Brüstle, Thomas; Hermes, Stephen; Igusa, Kiyoshi; Todorov, Gordana Semi-invariant pictures and two conjectures on maximal green sequences, J. Algebra, Volume 473 (2017), pp. 80-109 | DOI | MR | Zbl

[10] Brüstle, Thomas; Smith, David; Treffinger, Hipolito Stability conditions, tau-tilting theory and maximal green sequences (2017) (https://arxiv.org/abs/1805.04382)

[11] Buan, Aslak Bakke; Iyama, Osamu; Reiten, Idun; Smith, David Mutation of cluster-tilting objects and potentials, Amer. J. Math., Volume 133 (2011) no. 4, pp. 835-887 | DOI | MR | Zbl

[12] Buan, Aslak Bakke; Marsh, Robert J.; Reineke, Markus; Reiten, Idun; Todorov, Gordana Tilting theory and cluster combinatorics, Adv. Math., Volume 204 (2006) no. 2, pp. 572-618 | DOI | MR | Zbl

[13] Buan, Aslak Bakke; Marsh, Robert J.; Reiten, Idun Cluster-tilted algebras of finite representation type, J. Algebra, Volume 306 (2006) no. 2, pp. 412-431 | DOI | MR | Zbl

[14] Buan, Aslak Bakke; Marsh, Robert J.; Reiten, Idun Cluster-tilted algebras, Trans. Amer. Math. Soc., Volume 359 (2007) no. 1, p. 323-332 (electronic) | DOI | MR | Zbl

[15] Buan, Aslak Bakke; Vatne, Dagfinn F. Derived equivalence classification for cluster-tilted algebras of type A n , J. Algebra, Volume 319 (2008) no. 7, pp. 2723-2738 | DOI | MR | Zbl

[16] Butler, Michael C. R.; Ringel, Claus Michael Auslander–Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra, Volume 15 (1987), pp. 145-179 | DOI | MR | Zbl

[17] Caldero, Philippe; Chapoton, Frederic; Schiffler, Ralf Quivers with relations arising from clusters (A n case), Trans. Amer. Math. Soc., Volume 358 (2006) no. 3, pp. 1347-1364 | DOI | MR

[18] Cormier, Emily; Dillery, Peter; Resh, Jill; Serhiyenko, Khrystyna; Whelan, John Minimal length maximal green sequences and triangulations of polygons, J. Algebraic Combin., Volume 44 (2016) no. 4, pp. 905-930 | DOI | MR | Zbl

[19] Demonet, Laurent; Iyama, Osamu; Jasso, Gustavo τ-tilting finite algebras, bricks and g-vectors, Int. Math. Res. Not. (2017), pp. 1-41 | Zbl

[20] Derksen, Harm; Weyman, Jerzy; Zelevinsky, Andrei Quivers with potentials and their representations I: Mutations, Selecta Math., Volume 14 (2008) no. 1, pp. 59-119 | DOI | MR | Zbl

[21] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras. II: Finite type classification, Invent. Math., Volume 154 (2003), pp. 63-121 | DOI | MR | Zbl

[22] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras. IV. Coefficients, Compos. Math., Volume 143 (2007) no. 1, pp. 112-164 | DOI | MR | Zbl

[23] Garver, Alexander; McConville, Thomas; Serhiyenko, Khrystyna Minimal length maximal green sequences, Adv. in Appl. Math., Volume 96 (2018), pp. 76-138 | DOI | MR | Zbl

[24] Igusa, Kiyoshi Linearity of stability conditions (2017) (https://arxiv.org/abs/1706.06986)

[25] Koenig, Steffen; Zhu, Bin From triangulated categories to abelian categories: cluster tilting in a general framework, Math. Z., Volume 258 (2008), pp. 143-160 | DOI | MR | Zbl

[26] Qiu, Yu Stability conditions and quantum dilogarithm identities for Dynkin quivers, Adv. Math., Volume 269 (2015), pp. 229-264 | MR | Zbl

[27] Reineke, Markus The Harder–Narasimhan system in quantum groups and cohomology of quiver moduli, Invent. Math., Volume 152 (2003) no. 2, pp. 349-368 | DOI | MR | Zbl

Cited by Sources: