The cohomology of abelian Hessenberg varieties and the Stanley–Stembridge conjecture
Algebraic Combinatorics, Volume 2 (2019) no. 6, pp. 1059-1108.

We define a subclass of Hessenberg varieties called abelian Hessenberg varieties, inspired by the theory of abelian ideals in a Lie algebra developed by Kostant and Peterson. We give an inductive formula for the 𝔖 n -representation on the cohomology of an abelian regular semisimple Hessenberg variety with respect to the action defined by Tymoczko. Our result implies that a graded version of the Stanley–Stembridge conjecture holds in the abelian case, and generalizes results obtained by Shareshian–Wachs and Teff. Our proof uses previous work of Stanley, Gasharov, Shareshian–Wachs, and Brosnan–Chow, as well as results of the second author on the geometry and combinatorics of Hessenberg varieties. As part of our arguments, we obtain inductive formulas for the Poincaré polynomials of regular abelian Hessenberg varieties.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.76
Classification: 14M17, 05E05
Keywords: Stanley–Stembridge conjecture, symmetric functions, e-positivity, Hessenberg varieties, abelian ideal

Harada, Megumi 1; Precup, Martha E. 2

1 Department of Mathematics and Statistics McMaster University 1280 Main Street West Hamilton Ontario L8S4K1, Canada
2 Department of Mathematics and Statistics Washington University in St. Louis One Brookings Drive St. Louis Missouri 63130, U.S.A.
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2019__2_6_1059_0,
     author = {Harada, Megumi and Precup, Martha E.},
     title = {The cohomology of abelian {Hessenberg} varieties and the {Stanley{\textendash}Stembridge} conjecture},
     journal = {Algebraic Combinatorics},
     pages = {1059--1108},
     publisher = {MathOA foundation},
     volume = {2},
     number = {6},
     year = {2019},
     doi = {10.5802/alco.76},
     mrnumber = {4049838},
     zbl = {07140425},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.76/}
}
TY  - JOUR
AU  - Harada, Megumi
AU  - Precup, Martha E.
TI  - The cohomology of abelian Hessenberg varieties and the Stanley–Stembridge conjecture
JO  - Algebraic Combinatorics
PY  - 2019
SP  - 1059
EP  - 1108
VL  - 2
IS  - 6
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.76/
DO  - 10.5802/alco.76
LA  - en
ID  - ALCO_2019__2_6_1059_0
ER  - 
%0 Journal Article
%A Harada, Megumi
%A Precup, Martha E.
%T The cohomology of abelian Hessenberg varieties and the Stanley–Stembridge conjecture
%J Algebraic Combinatorics
%D 2019
%P 1059-1108
%V 2
%N 6
%I MathOA foundation
%U https://alco.centre-mersenne.org/articles/10.5802/alco.76/
%R 10.5802/alco.76
%G en
%F ALCO_2019__2_6_1059_0
Harada, Megumi; Precup, Martha E. The cohomology of abelian Hessenberg varieties and the Stanley–Stembridge conjecture. Algebraic Combinatorics, Volume 2 (2019) no. 6, pp. 1059-1108. doi : 10.5802/alco.76. https://alco.centre-mersenne.org/articles/10.5802/alco.76/

[1] Abe, Hiraku; Harada, Megumi; Horiguchi, Tatsuya; Masuda, Mikiya The cohomology rings of regular nilpotent Hessenberg Varieties in Lie type A, Int. Math. Res. Not., Volume 2019 (2019) no. 17, pp. 5316-5388 | DOI | MR

[2] Abe, Hiraku; Horiguchi, Tatsuya; Masuda, Mikiya The cohomology rings of regular semisimple Hessenberg varieties for h=(h(1),n,,n), J. Comb., Volume 10 (2019) no. 1, pp. 27-59 | DOI | MR | Zbl

[3] Brosnan, Patrick; Chow, Timothy Y. Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties, Adv. Math., Volume 329 (2018), pp. 955-1001 | DOI | MR | Zbl

[4] Ceccherini-Silberstein, Tullio; Scarabotti, Fabio; Tolli, Filippo Representation theory of the symmetric groups, Cambridge Studies in Advanced Mathematics, 121, Cambridge University Press, Cambridge, 2010, xvi+412 pages | DOI | MR | Zbl

[5] Cho, Soojin; Huh, JiSun On e-positivity and e-unimodality of chromatic quasisymmetric functions (2017) (https://arxiv.org/abs/1711.07152) | Zbl

[6] De Mari, Filippo; Procesi, Claudio; Shayman, Mark. A. Hessenberg varieties, Trans. Amer. Math. Soc., Volume 332 (1992) no. 2, pp. 529-534 | DOI | MR | Zbl

[7] De Mari Casareto Dal Verme, Filippo On the topology of the Hessenberg varieties of a matrix, Ph. D. Thesis, Washington University in St. Louis (USA) (1987) | MR

[8] Fulton, William Young tableaux, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997, x+260 pages | MR | Zbl

[9] Gasharov, Vesselin Incomparability graphs of (3+1)-free posets are s-positive, Discrete Math., Volume 157 (1996) no. 1-3, pp. 193-197 | DOI | MR | Zbl

[10] Gebhard, David D.; Sagan, Bruce E. A chromatic symmetric function in noncommuting variables, J. Algebraic Combin., Volume 13 (2001) no. 3, pp. 227-255 | DOI | MR | Zbl

[11] Guay-Paquet, Mathieu A modular relation for the chromatic symmetric functions of (3+1)-free posets (2013) (https://arxiv.org/abs/1306.2400)

[12] Guay-Paquet, Mathieu A second proof of the Shareshian–Wachs conjecture, by way of a new Hopf algebra (2016) (https://arxiv.org/abs/1601.05498)

[13] Haglund, James The q,t-Catalan numbers and the space of diagonal harmonics, University Lecture Series, 41, American Mathematical Society, Providence, RI, 2008, viii+167 pages | MR | Zbl

[14] Humphreys, James E. Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1972, xii+169 pages | DOI | MR | Zbl

[15] Kostant, Bertram Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2), Volume 74 (1961), pp. 329-387 | DOI | MR | Zbl

[16] Kostant, Bertram The set of abelian ideals of a Borel subalgebra, Cartan decompositions, and discrete series representations, Int. Math. Res. Not., Volume 1998 (1998) no. 5, pp. 225-252 | DOI | MR | Zbl

[17] Mbirika, Aba; Tymoczko, Julianna Generalizing Tanisaki’s ideal via ideals of truncated symmetric functions, J. Algebraic Combin., Volume 37 (2013) no. 1, pp. 167-199 | DOI | MR | Zbl

[18] Precup, Martha Affine pavings of Hessenberg varieties for semisimple groups, Selecta Math. (N.S.), Volume 19 (2013) no. 4, pp. 903-922 | DOI | MR | Zbl

[19] Precup, Martha The connectedness of Hessenberg varieties, J. Algebra, Volume 437 (2015), pp. 34-43 | DOI | MR | Zbl

[20] Precup, Martha The Betti numbers of regular Hessenberg varieties are palindromic, Transform. Groups, Volume 23 (2018) no. 2, pp. 491-499 | DOI | MR | Zbl

[21] Rahman, Md. Saidur Basic graph theory, Undergraduate Topics in Computer Science, Springer, Cham, 2017, x+169 pages | DOI | MR | Zbl

[22] Shareshian, John; Wachs, Michelle L. Chromatic quasisymmetric functions, Adv. Math., Volume 295 (2016), pp. 497-551 | DOI | MR | Zbl

[23] Sommers, Eric; Tymoczko, Julianna Exponents for B-stable ideals, Trans. Amer. Math. Soc., Volume 358 (2006) no. 8, p. 3493-3509 (electronic) | DOI | MR | Zbl

[24] Stanley, Richard P. (http://front.math.ucdavis.edu/math.SG/0211231, personal communication) | Numdam

[25] Stanley, Richard P. A symmetric function generalization of the chromatic polynomial of a graph, Adv. Math., Volume 111 (1995) no. 1, pp. 166-194 | DOI | MR | Zbl

[26] Stanley, Richard P. Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+581 pages | DOI | MR | Zbl

[27] Stanley, Richard P.; Stembridge, John R. On immanants of Jacobi-Trudi matrices and permutations with restricted position, J. Combin. Theory Ser. A, Volume 62 (1993) no. 2, pp. 261-279 | DOI | MR | Zbl

[28] Teff, Nicholas James The Hessenberg representation, Ph. D. Thesis, The University of Iowa (USA) (2013) | MR

[29] Tymoczko, Julianna S. Linear conditions imposed on flag varieties, Amer. J. Math., Volume 128 (2006) no. 6, pp. 1587-1604 | DOI | MR | Zbl

[30] Tymoczko, Julianna S. Permutation actions on equivariant cohomology of flag varieties, Toric topology (Contemp. Math.), Volume 460, Amer. Math. Soc., Providence, RI, 2008, pp. 365-384 | DOI | MR | Zbl

Cited by Sources: