In this paper, we study prime order automorphisms of generalized quadrangles. We show that, if is a thick generalized quadrangle of order , where and is prime, and has an automorphism of order , then
with a similar inequality holding in the dual case when , is prime, and is a thick generalized quadrangle of order with an automorphism of order .
In particular, if is prime and if there exists a natural number such that
then a thick generalized quadrangle cannot have an automorphism of order , and hence the automorphism group of cannot be transitive on points. These results apply to numerous potential orders for which it is still unknown whether or not generalized quadrangles exist, showing that any examples would necessarily be somewhat asymmetric. Finally, we are able to use the theory we have built up about prime order automorphisms of generalized quadrangles to show that the automorphism group of a potential generalized quadrangle of order must necessarily be intransitive on both points and lines.
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.89
Afton, Santana F. 1; Swartz, Eric 1
@article{ALCO_2020__3_1_143_0, author = {Afton, Santana F. and Swartz, Eric}, title = {On prime order automorphisms of generalized quadrangles}, journal = {Algebraic Combinatorics}, pages = {143--160}, publisher = {MathOA foundation}, volume = {3}, number = {1}, year = {2020}, doi = {10.5802/alco.89}, zbl = {07169927}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.89/} }
TY - JOUR AU - Afton, Santana F. AU - Swartz, Eric TI - On prime order automorphisms of generalized quadrangles JO - Algebraic Combinatorics PY - 2020 SP - 143 EP - 160 VL - 3 IS - 1 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.89/ DO - 10.5802/alco.89 LA - en ID - ALCO_2020__3_1_143_0 ER -
%0 Journal Article %A Afton, Santana F. %A Swartz, Eric %T On prime order automorphisms of generalized quadrangles %J Algebraic Combinatorics %D 2020 %P 143-160 %V 3 %N 1 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.89/ %R 10.5802/alco.89 %G en %F ALCO_2020__3_1_143_0
Afton, Santana F.; Swartz, Eric. On prime order automorphisms of generalized quadrangles. Algebraic Combinatorics, Volume 3 (2020) no. 1, pp. 143-160. doi : 10.5802/alco.89. https://alco.centre-mersenne.org/articles/10.5802/alco.89/
[1] Ovoids of generalized quadrangles of order and Delsarte cocliques in related strongly regular graphs, J. Combin. Des., Volume 26 (2018) no. 5, pp. 249-263 | DOI | MR | Zbl
[2] Generalised quadrangles with a group of automorphisms acting primitively on points and lines, J. Combin. Theory Ser. A, Volume 119 (2012) no. 7, pp. 1479-1499 | DOI | MR | Zbl
[3] Generalized quadrangles and transitive pseudo-hyperovals, J. Combin. Des., Volume 24 (2016) no. 4, pp. 151-164 | DOI | MR | Zbl
[4] A classification of finite antiflag-transitive generalized quadrangles, Trans. Amer. Math. Soc., Volume 370 (2018) no. 3, pp. 1551-1601 | DOI | MR | Zbl
[5] A classification of finite locally 2-transitive generalized quadrangles (2019) (https://arxiv.org/abs/1903.07442)
[6] Point-primitive, line-transitive generalised quadrangles of holomorph type, J. Group Theory, Volume 20 (2017) no. 2, pp. 269-287 | DOI | MR | Zbl
[7] Simple groups, product actions, and generalized quadrangles, Nagoya Math. J., Volume 234 (2019), pp. 87-126 | DOI | MR | Zbl
[8] On the structure of generalized quadrangles, J. Algebra, Volume 15 (1970), pp. 443-454 | DOI | MR | Zbl
[9] Nouveaux théorÚmes relatifs à la distinction des nombres premiers et à la composition des entiers en facteurs, Sc. Math. Phys., Volume 6 (1857), pp. 305-329
[10] Permutation groups, London Mathematical Society Student Texts, 45, Cambridge University Press, Cambridge, 1999, x+220 pages | DOI | MR | Zbl
[11] Automorphisms of strongly regular graphs with applications to partial difference sets, Des. Codes Cryptogr., Volume 79 (2016) no. 3, pp. 471-485 | DOI | MR | Zbl
[12] Generalized quadrangles with an abelian Singer group, Des. Codes Cryptogr., Volume 39 (2006) no. 1, pp. 81-87 | DOI | MR | Zbl
[13] The automorphism group of Payne derived generalized quadrangles, Adv. Math., Volume 214 (2007) no. 1, pp. 146-156 | DOI | MR | Zbl
[14] Generalized quadrangles admitting a sharply transitive Heisenberg group, Des. Codes Cryptogr., Volume 47 (2008) no. 1-3, pp. 237-242 | DOI | MR | Zbl
[15] On automorphisms of a distance-regular graph with intersection array , Dokl. Akad. Nauk, Volume 432 (2010) no. 5, pp. 583-587 | DOI | MR
[16] Regular groups on generalized quadrangles and nonabelian difference sets with multiplier , Geom. Dedicata, Volume 41 (1992) no. 2, pp. 165-174 | DOI | MR | Zbl
[17] Transitive projective planes, Adv. Geom., Volume 7 (2007) no. 4, pp. 475-528 | DOI | MR | Zbl
[18] Transitive projective planes and insoluble groups, Trans. Amer. Math. Soc., Volume 368 (2016) no. 5, pp. 3017-3057 | DOI | MR | Zbl
[19] Simple groups of order divisible by at most four primes, Proc. F. Scorina Gomel State Univ., Volume 16 (2000) no. 3, pp. 64-75 | Zbl
[20] Finite group theory, Graduate Studies in Mathematics, 92, American Mathematical Society, Providence, RI, 2008, xii+350 pages | DOI | MR | Zbl
[21] Search for properties of the missing Moore graph, Linear Algebra Appl., Volume 432 (2010) no. 9, pp. 2381-2398 | DOI | MR | Zbl
[22] Ovoids and bipartite subgraphs in generalized quadrangles, Mat. Zametki, Volume 73 (2003) no. 6, pp. 878-885 | DOI | MR | Zbl
[23] Automorphism groups of generalized quadrangles via an unusual action of , European J. Combin., Volume 23 (2002) no. 2, pp. 213-232 | DOI | MR | Zbl
[24] An inequality for generalized quadrangles, Proc. Amer. Math. Soc., Volume 71 (1978) no. 1, pp. 147-152 | DOI | MR | Zbl
[25] The fundamental theorem of -clan geometry, Des. Codes Cryptogr., Volume 8 (1996) no. 1-2, pp. 181-202 (Special issue dedicated to Hanfried Lenz) | DOI | MR | Zbl
[26] Finite generalized quadrangles, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), ZĂŒrich, 2009, xii+287 pages | DOI | MR | Zbl
[27] An OâNanâScott theorem for finite quasiprimitive permutation groups and an application to -arc transitive graphs, J. London Math. Soc. (2), Volume 47 (1993) no. 2, pp. 227-239 | DOI | MR | Zbl
[28] On generalized quadrangles with a point regular group of automorphisms, European J. Combin., Volume 79 (2019), pp. 60-74 | DOI | MR | Zbl
[29] Sur la trialitĂ© et certains groupes qui sâen dĂ©duisent, Inst. Hautes Etudes Sci. Publ. Math., Volume 2 (1959), pp. 14-60 | DOI | Zbl
[30] A generalized quadrangle with an automorphism group acting regularly on the points, European J. Combin., Volume 28 (2007) no. 2, pp. 653-664 | DOI | MR | Zbl
Cited by Sources: